On stability of minimal submanifolds in compact symmetric spaces

Yoshihiro Ohnita

Compositio Mathematica (1987)

  • Volume: 64, Issue: 2, page 157-189
  • ISSN: 0010-437X

How to cite


Ohnita, Yoshihiro. "On stability of minimal submanifolds in compact symmetric spaces." Compositio Mathematica 64.2 (1987): 157-189. <http://eudml.org/doc/89873>.

author = {Ohnita, Yoshihiro},
journal = {Compositio Mathematica},
keywords = {totally geodesic submanifolds; rank one symmetric spaces; Helgason spheres; stable rectifiable currents},
language = {eng},
number = {2},
pages = {157-189},
publisher = {Martinus Nijhoff Publishers},
title = {On stability of minimal submanifolds in compact symmetric spaces},
url = {http://eudml.org/doc/89873},
volume = {64},
year = {1987},

AU - Ohnita, Yoshihiro
TI - On stability of minimal submanifolds in compact symmetric spaces
JO - Compositio Mathematica
PY - 1987
PB - Martinus Nijhoff Publishers
VL - 64
IS - 2
SP - 157
EP - 189
LA - eng
KW - totally geodesic submanifolds; rank one symmetric spaces; Helgason spheres; stable rectifiable currents
UR - http://eudml.org/doc/89873
ER -


  1. [C-L-N] B-Y. Chen, P-F. Leung and T. Nagano, Totally geodesic submanifolds of symmetric spaces III, preprint. 
  2. [Fe] H. Federer, Geometric measure theory, Die Grundlehren der math. Wissenschaften, Band 153, Springer-Verlag, New York (1969). Zbl0176.00801MR257325
  3. [F-F] H. Federer and W.H. Fleming, Normal and integral currents, Ann. of Math.72 (1960) 458-520. Zbl0187.31301MR123260
  4. [F1] W.H. Fleming, Flat chains over a finite coefficient group, Trans. Amer. Math. Soc.121 (1966) 160-186. Zbl0136.03602MR185084
  5. [H1] S. Helgason, Totally geodesic spheres in compact symmetric spaces, Math. Ann.165 (1966) 309-317. Zbl0142.19204MR210043
  6. [H2] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, San Francisco, London (1978). Zbl0451.53038MR514561
  7. [H-W] R. Howard and S.W. Wei, On the existence and non-existence of stable submanifolds and currents in positively curved manifolds and the topology of submanifolds in Euclidean spaces, preprint. 
  8. [K] Y. Kimura, The nullity of compact Kaehler manifolds in complex projective spaces, J. Math. Soc. Japan29 (1977) 561-580. Zbl0349.53039MR482605
  9. [K-N] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, I, II, Wiley-Interscience, New York, (1963, 1969). Zbl0119.37502
  10. [K-O-T] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Z.193 (1986) 165-189. Zbl0634.53022MR856147
  11. [L-S] H.B. Lawson, Jr. and J. Simons, On stable currents and their application to global problems in real and complex geometry, Ann. of Math.98 (1973) 427-450. Zbl0283.53049MR324529
  12. [M-P] W.G. Mckay and J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Lecture Notes in Pure and Applied Mathematics69, Marcel Dekker, Inc., New York and Baesel (1981). Zbl0448.17001MR604363
  13. [N] H. Naitoh, Totally real parallel submanifolds in P n(C), Tokyo J. Math.29 (1981) 291-306. Zbl0485.53044MR646040
  14. [O1] Y. Ohnita, Stable minimal submanifolds in compact rank one symmetric spaces, Tohoku Math. J.38 (1986) 199-217. Zbl0594.53037MR843807
  15. [O2] Y. Ohnita, Stability of harmonic maps and standard minimal immersions, Tohoku Math. J.36 (1986) 259-267. Zbl0585.58012MR843811
  16. [O-T] Y. Ohnita and H. Tasaki, Uniqueness of certain 3-dimensional homologically volume minimizing submanifolds in compact simple Lie groups, Tsukuba J. Math.10 (1986) 11-16. Zbl0595.53055MR846410
  17. [S-U] J. Sacks and K. Uhlenbech, The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981) 1-24. Zbl0462.58014MR604040
  18. [S] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math.88 (1968) 62-105. Zbl0181.49702MR233295
  19. [Ta] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan18 (1966), 380-385. Zbl0145.18601MR198393
  20. [Te1] M. Takeuchi, On the fundamental group and the group of isometries of a symmetric space, J. Fac. Sci. Univ. Tokyo10 (1964) 88-123. Zbl0196.54605MR170983
  21. [Te2] M. Takeuchi, Modern theory of spherical functions (in Japanese), Iwanami, Tokyo, 1975. 
  22. [Te3] M. Takeuchi, Stability of certain minimal submanifolds of compact Hermitian symmetric spaces, Tohoku Math. J.36 (1984) 293-314. Zbl0528.53047MR742600
  23. [Ts] H. Tasaki, Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math.9 (1985) 117-131. Zbl0581.53044MR794664
  24. [Wa] N.R. Wallach, Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, Inc., New York (1973). Zbl0265.22022MR498996
  25. [We] S.W. Wei, Classification of stable currents in the product of spheres, preprint. 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.