The eta invariant and the equivariant unitary bordism of spherical space form groups

Peter B. Gilkey

Compositio Mathematica (1988)

  • Volume: 65, Issue: 1, page 33-50
  • ISSN: 0010-437X

How to cite

top

Gilkey, Peter B.. "The eta invariant and the equivariant unitary bordism of spherical space form groups." Compositio Mathematica 65.1 (1988): 33-50. <http://eudml.org/doc/89881>.

@article{Gilkey1988,
author = {Gilkey, Peter B.},
journal = {Compositio Mathematica},
keywords = {index theory; equivariant unitary bordism; eta invariant; self-adjoint elliptic operator},
language = {eng},
number = {1},
pages = {33-50},
publisher = {Kluwer Academic Publishers},
title = {The eta invariant and the equivariant unitary bordism of spherical space form groups},
url = {http://eudml.org/doc/89881},
volume = {65},
year = {1988},
}

TY - JOUR
AU - Gilkey, Peter B.
TI - The eta invariant and the equivariant unitary bordism of spherical space form groups
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 1
SP - 33
EP - 50
LA - eng
KW - index theory; equivariant unitary bordism; eta invariant; self-adjoint elliptic operator
UR - http://eudml.org/doc/89881
ER -

References

top
  1. 1 M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I. Math. Proc. Camp. Phil. Soc.77 (1975) 43-69.II. Math. Proc. Camb. Phi. Soc.78 (1975) 405-432.III. Math. Proc. Camb. Phil. Soc.79 (1976) 71-99. Zbl0325.58015MR397797
  2. 2 M. Bendersky and D. Davis, Complex bordism of cyclic 2-groups (to appear). 
  3. 3 A. Bahri and P. Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2-groupsPacific J. Math128 (1987), 1-24. Zbl0587.58045MR883375
  4. 4 A. Bahri and P. Gilkey, Pin' bordism and equivariant Spinc bordism of cyclic 2-groups, Proceedings of the AMS, 99 (1987), 380-382. Zbl0623.55002MR870805
  5. 5 P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Springer Verlag (1964). Zbl0111.35601MR176478
  6. 6 K. Fujii, T. Kobayashi, K. Shimomura, M. Sugawara, KO groups of lens spaces modulo powers of two. Hiroshima Math J.8 (1978) 469-489. Zbl0399.55012MR515298
  7. 7 P. Gilkey, The eta invariant and equivariant Spinc bordism for spherical space form groups (to appear). Zbl0645.58037
  8. 8 P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Publish or Perish (1984). Zbl0565.58035MR783634
  9. 9 P. Gilkey, The eta invariant and the K-theory of spherical space forms, Inventiones Math.76 (1984) 421-453. Zbl0547.58032MR746537
  10. 10 P. Landweber, Complex bordism of classifying spaces, Proceedings of AMS V2 (1971) 175-179. Zbl0207.53601MR268885
  11. 11 A. Mesneoui, Unitary cobordism and classifying spaces of quaternions (to appear). 
  12. 12 G. Wilson, K-theory invariants for unitary bordism, Quarterly J. Math. V2 (1973) 499-526. Zbl0269.55004MR328963
  13. 13 J. Wolf, Spaces of Constant Curvature, 5th edn, Publish or Perish (1985). Zbl0281.53034MR928600

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.