The eta invariant and the equivariant unitary bordism of spherical space form groups
Compositio Mathematica (1988)
- Volume: 65, Issue: 1, page 33-50
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral asymmetry and Riemannian geometry I. Math. Proc. Camp. Phil. Soc.77 (1975) 43-69.II. Math. Proc. Camb. Phi. Soc.78 (1975) 405-432.III. Math. Proc. Camb. Phil. Soc.79 (1976) 71-99. Zbl0325.58015MR397797
- 2 M. Bendersky and D. Davis, Complex bordism of cyclic 2-groups (to appear).
- 3 A. Bahri and P. Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2-groupsPacific J. Math128 (1987), 1-24. Zbl0587.58045MR883375
- 4 A. Bahri and P. Gilkey, Pin' bordism and equivariant Spinc bordism of cyclic 2-groups, Proceedings of the AMS, 99 (1987), 380-382. Zbl0623.55002MR870805
- 5 P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Springer Verlag (1964). Zbl0111.35601MR176478
- 6 K. Fujii, T. Kobayashi, K. Shimomura, M. Sugawara, KO groups of lens spaces modulo powers of two. Hiroshima Math J.8 (1978) 469-489. Zbl0399.55012MR515298
- 7 P. Gilkey, The eta invariant and equivariant Spinc bordism for spherical space form groups (to appear). Zbl0645.58037
- 8 P. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Publish or Perish (1984). Zbl0565.58035MR783634
- 9 P. Gilkey, The eta invariant and the K-theory of spherical space forms, Inventiones Math.76 (1984) 421-453. Zbl0547.58032MR746537
- 10 P. Landweber, Complex bordism of classifying spaces, Proceedings of AMS V2 (1971) 175-179. Zbl0207.53601MR268885
- 11 A. Mesneoui, Unitary cobordism and classifying spaces of quaternions (to appear).
- 12 G. Wilson, K-theory invariants for unitary bordism, Quarterly J. Math. V2 (1973) 499-526. Zbl0269.55004MR328963
- 13 J. Wolf, Spaces of Constant Curvature, 5th edn, Publish or Perish (1985). Zbl0281.53034MR928600