A sufficient condition for Ω -stability of vector fields on open manifolds

Janina Kotus; Fopke Klok

Compositio Mathematica (1988)

  • Volume: 65, Issue: 2, page 171-176
  • ISSN: 0010-437X

How to cite

top

Kotus, Janina, and Klok, Fopke. "A sufficient condition for $\Omega $-stability of vector fields on open manifolds." Compositio Mathematica 65.2 (1988): 171-176. <http://eudml.org/doc/89887>.

@article{Kotus1988,
author = {Kotus, Janina, Klok, Fopke},
journal = {Compositio Mathematica},
keywords = {Kupka-Smale properties; R-stable; periodic points; Auslander's recurrent points; R-stability},
language = {eng},
number = {2},
pages = {171-176},
publisher = {Kluwer Academic Publishers},
title = {A sufficient condition for $\Omega $-stability of vector fields on open manifolds},
url = {http://eudml.org/doc/89887},
volume = {65},
year = {1988},
}

TY - JOUR
AU - Kotus, Janina
AU - Klok, Fopke
TI - A sufficient condition for $\Omega $-stability of vector fields on open manifolds
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 65
IS - 2
SP - 171
EP - 176
LA - eng
KW - Kupka-Smale properties; R-stable; periodic points; Auslander's recurrent points; R-stability
UR - http://eudml.org/doc/89887
ER -

References

top
  1. 1 N.P. Bhatia and G.P. Szegö, Dynamical systems: stability theory and applications, Lecture Notes in Math.35 (1967). Zbl0155.42201MR219843
  2. 2 C. Camacho, M. Krych, R. Mané and Z. Nitecki, An extension of Peixoto's structural stability theorem to open surfaces with finite genus, Lecture Notes in Math.1007 (1983) pp. 60-87. Zbl0537.58031
  3. 3 J. Guckenheimer, Absolutely Ω-stable diffeomorphisms, Topology11 (1972) 195-197. Zbl0246.58013
  4. 4 F. Klok, Ω-stability of plane vector fields, Bol. Soc. Bras. Mat.12(1) (1981) 21-28. Zbl0574.58018
  5. 5 J. Kotus, M. Krych and Z. Nitecki, Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc.37(261) (1982). Zbl0497.58015MR653093
  6. 6 J. Kotus, Ω = Per for generic vector fields on some open surfaces, Demonstratio MathematicaXVIII(1) (1985) 325-340. Zbl0624.58015
  7. 7 J. Palis and W. de Melo, Introducao aos sistemas dinamicos, Projéto Euclides, Ed. Edgard Blucher (1978). Zbl0507.58001
  8. 8 F. Takens and W. White, Vector fields with no wandering points, Amer. J. Math.98 (1976) 415-425. Zbl0339.58009MR418163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.