The rationality of some moduli spaces of plane curves

N. I. Shepherd-Barron

Compositio Mathematica (1988)

  • Volume: 67, Issue: 1, page 51-88
  • ISSN: 0010-437X

How to cite

top

Shepherd-Barron, N. I.. "The rationality of some moduli spaces of plane curves." Compositio Mathematica 67.1 (1988): 51-88. <http://eudml.org/doc/89910>.

@article{Shepherd1988,
author = {Shepherd-Barron, N. I.},
journal = {Compositio Mathematica},
keywords = {rationality of moduli space; rationality of the quotient space of the space of pencils of binary forms; rationality of the moduli space for polarized K3 surfaces},
language = {eng},
number = {1},
pages = {51-88},
publisher = {Kluwer Academic Publishers},
title = {The rationality of some moduli spaces of plane curves},
url = {http://eudml.org/doc/89910},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Shepherd-Barron, N. I.
TI - The rationality of some moduli spaces of plane curves
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 67
IS - 1
SP - 51
EP - 88
LA - eng
KW - rationality of moduli space; rationality of the quotient space of the space of pencils of binary forms; rationality of the moduli space for polarized K3 surfaces
UR - http://eudml.org/doc/89910
ER -

References

top
  1. 1 A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc and Sir Peter Swinnerton-Dyer: Variétés stablement rationelles non-rationelles, Annals of Math.121 (1985) 283-318. Zbl0589.14042MR786350
  2. 2 F. Bogomolov: Stable rationality of quotient varieties by simply-connected groups, Mat. Sbornik130 (1986) 3-17. Zbl0615.14031MR847340
  3. 3 F. Bogomolov and P. Katsylo: Rationality of some quotient varieties, Mat. Sbornik126 (1985) 584-589. Zbl0591.14040MR788089
  4. 4 J.H. Grace and W.H. Young: The Algebra of Invariants (1903). JFM34.0114.01
  5. 5 E.S. Gradshtein and I.M. Ryzhik: Tables of Integrals, Series and Products (1980). 
  6. 6 W. Haboush: Brauer groups of homogeneous spaces I. In: F. van Oystaeyen (ed.), Proc. NATO Summer School, Antwerp (1983). Zbl0569.14025MR770586
  7. 7 R. Hall: On algebraic varieties possessing finite continuous groups of self-transformations, J. London Math. Soc.30 (1955) 507-511. Zbl0065.14001MR73276
  8. 8 S. Mukai: Curves, K3 surfaces and Fano threefolds that are complete intersections in homogeneous spaces (unpublished manuscript). 
  9. 9 D. Mumford and J. Fogarty: Geometric Invariant Theory, 2nd edn. (1982). Zbl0504.14008MR719371
  10. 10 M. Rosenlicht: Some basic theorems on algebraic groups, Amer. J. Math.78 (1956) 401-443. Zbl0073.37601MR82183
  11. 11 D. Saltman: Noether's problem over an algebraically closer field, Inv. Math.77 (1984) 71-84. Zbl0546.14014MR751131
  12. 12 E.B. Vinberg: Rationality of the field of invariants of a triangular group, Moscow Univ. Math. Bulletin37 (1982) 27-29. Zbl0524.14014MR655396
  13. 13 H. Weyl: The Classical Groups, 2nd edn (1946). Zbl1024.20502
  14. 14 J.E. Humphreys: Introduction to Lie Algebras and Representation Theory. Springer (1972). Zbl0254.17004MR323842

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.