The rationality of some moduli spaces of plane curves
Compositio Mathematica (1988)
- Volume: 67, Issue: 1, page 51-88
- ISSN: 0010-437X
Access Full Article
topHow to cite
topShepherd-Barron, N. I.. "The rationality of some moduli spaces of plane curves." Compositio Mathematica 67.1 (1988): 51-88. <http://eudml.org/doc/89910>.
@article{Shepherd1988,
author = {Shepherd-Barron, N. I.},
journal = {Compositio Mathematica},
keywords = {rationality of moduli space; rationality of the quotient space of the space of pencils of binary forms; rationality of the moduli space for polarized K3 surfaces},
language = {eng},
number = {1},
pages = {51-88},
publisher = {Kluwer Academic Publishers},
title = {The rationality of some moduli spaces of plane curves},
url = {http://eudml.org/doc/89910},
volume = {67},
year = {1988},
}
TY - JOUR
AU - Shepherd-Barron, N. I.
TI - The rationality of some moduli spaces of plane curves
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 67
IS - 1
SP - 51
EP - 88
LA - eng
KW - rationality of moduli space; rationality of the quotient space of the space of pencils of binary forms; rationality of the moduli space for polarized K3 surfaces
UR - http://eudml.org/doc/89910
ER -
References
top- 1 A. Beauville, J.-L. Colliot-Thélène, J.-J. Sansuc and Sir Peter Swinnerton-Dyer: Variétés stablement rationelles non-rationelles, Annals of Math.121 (1985) 283-318. Zbl0589.14042MR786350
- 2 F. Bogomolov: Stable rationality of quotient varieties by simply-connected groups, Mat. Sbornik130 (1986) 3-17. Zbl0615.14031MR847340
- 3 F. Bogomolov and P. Katsylo: Rationality of some quotient varieties, Mat. Sbornik126 (1985) 584-589. Zbl0591.14040MR788089
- 4 J.H. Grace and W.H. Young: The Algebra of Invariants (1903). JFM34.0114.01
- 5 E.S. Gradshtein and I.M. Ryzhik: Tables of Integrals, Series and Products (1980).
- 6 W. Haboush: Brauer groups of homogeneous spaces I. In: F. van Oystaeyen (ed.), Proc. NATO Summer School, Antwerp (1983). Zbl0569.14025MR770586
- 7 R. Hall: On algebraic varieties possessing finite continuous groups of self-transformations, J. London Math. Soc.30 (1955) 507-511. Zbl0065.14001MR73276
- 8 S. Mukai: Curves, K3 surfaces and Fano threefolds that are complete intersections in homogeneous spaces (unpublished manuscript).
- 9 D. Mumford and J. Fogarty: Geometric Invariant Theory, 2nd edn. (1982). Zbl0504.14008MR719371
- 10 M. Rosenlicht: Some basic theorems on algebraic groups, Amer. J. Math.78 (1956) 401-443. Zbl0073.37601MR82183
- 11 D. Saltman: Noether's problem over an algebraically closer field, Inv. Math.77 (1984) 71-84. Zbl0546.14014MR751131
- 12 E.B. Vinberg: Rationality of the field of invariants of a triangular group, Moscow Univ. Math. Bulletin37 (1982) 27-29. Zbl0524.14014MR655396
- 13 H. Weyl: The Classical Groups, 2nd edn (1946). Zbl1024.20502
- 14 J.E. Humphreys: Introduction to Lie Algebras and Representation Theory. Springer (1972). Zbl0254.17004MR323842
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.