Unitary representations of the Virasoro algebra and a conjecture of Kac
Vyjayanthi Chari; Andrew Pressley
Compositio Mathematica (1988)
- Volume: 67, Issue: 3, page 315-342
- ISSN: 0010-437X
Access Full Article
topHow to cite
topChari, Vyjayanthi, and Pressley, Andrew. "Unitary representations of the Virasoro algebra and a conjecture of Kac." Compositio Mathematica 67.3 (1988): 315-342. <http://eudml.org/doc/89921>.
@article{Chari1988,
author = {Chari, Vyjayanthi, Pressley, Andrew},
journal = {Compositio Mathematica},
keywords = {Ramond superalgebra; unitary representations; Virasoro algebra; Neveu- Schwarz Lie superalgebra},
language = {eng},
number = {3},
pages = {315-342},
publisher = {Kluwer Academic Publishers},
title = {Unitary representations of the Virasoro algebra and a conjecture of Kac},
url = {http://eudml.org/doc/89921},
volume = {67},
year = {1988},
}
TY - JOUR
AU - Chari, Vyjayanthi
AU - Pressley, Andrew
TI - Unitary representations of the Virasoro algebra and a conjecture of Kac
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 67
IS - 3
SP - 315
EP - 342
LA - eng
KW - Ramond superalgebra; unitary representations; Virasoro algebra; Neveu- Schwarz Lie superalgebra
UR - http://eudml.org/doc/89921
ER -
References
top- 1 D. Friedan, Z. Qiu and S. Shenker, Conformal invariance, unitarity and two-dimensional critical exponents. Vertex Operators in Mathematics and Physics, 419-449, MSRI Publications No. 4, Springer (1985). Zbl0559.58010MR781390
- 2 D. Friedan, Z. Qiu and S. Shenker, Superconformal invariance in two dimensions and the tricritical Ising model, Phys. Lett.151 B (1985) 37-43. MR778509
- 3 D. Friedan, Z. Qiu and S. Shenker, Details of the non-unitarity proof for highest weight representations of the Virasoro algebra, Commun. Math. Phys.107 (1986) 535-542. Zbl0608.17010MR868732
- 4 P. Goddard, A. Kent and D. Olive, Virasoro algebras and coset space models, Phys. Lett.152B (1985) 88-93. Zbl0661.17015MR778819
- 5 P. Goddard, A. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys.103 (1986) 105-119. Zbl0588.17014MR826859
- 6 V.G. Kac, Lie superalgebras, Advances in Math.26 (1977) 8-96. Zbl0366.17012MR486011
- 7 V.G. Kac, Highest weight representations of infinite-dimensional Lie algebras. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 299-304, Acad. Sci. Fennica, Helsinki (1980). Zbl0425.17009MR562619
- 8 V.G. Kac, Some problems of infinite-dimensional Lie algebras and their representations. Lie algebras and related topics, 117-126, Lecture Notes in Mathematics, 933, Springer (1982). Zbl0493.17011MR675110
- 9 V.G. Kac and M. Wakimoto, Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz and Ramond algebras. Conformal groups and related symmetries: physical results and mathematical background, 345-371, Lecture Notes in Physics, 261, Springer, 1986. MR870235
- 10 I. Kaplansky, The Virasoro algebra, Commun. Math. Phys.86 (1982) 49-54. Zbl0515.17007MR678001
- 11 I. Kaplansky and L.J. Santharoubane, Harish Chandra modules over the Virasoro algebra. Infinite-dimensional groups with applications, 217-231, MSRI Publications No. 5, Springer (1985). Zbl0589.17013MR823321
- 12 A.A. Kirillov, Unitary representations of the group of diffeomorphisms and of some of its subgroups, Selecta Math. Soviet.1 (1981) 351-372. Zbl0515.58009MR697287
- 13 A.W. Knapp, Representation theory of semisimple groups, Princeton University Press, Princeton (1986). Zbl0604.22001MR855239
- 14 I.A. Kostrikin, Irreducible graded representations of Lie algebras of Cartan type, Soviet Math. Dokl.19 (1978) 1369-1371. Zbl0412.17013
- 15 R.P. Langlands, On unitary representations of the Virasoro algebra. Proceedings of the Montreal workshop on infinite-dimensional Lie algebras and their applications, S. Kass, ed., to appear. Zbl0748.17025MR1114998
- 16 A. Tsuchiya and Y. Kanie, Unitary representations of the Virasoro algebra, Duke Math. J.53 (1986) 1013-1046. Zbl0611.17005MR874679
- 17 D.A. Vogan, Jr., Representations of real reductive Lie groups. Progress in Mathematics15, Birkhäuser, Boston (1981). Zbl0469.22012MR632407
- 18 E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th edition, Cambridge University Press, Cambridge (1978). Zbl45.0433.02MR1424469JFM45.0433.02
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.