# A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations

Compositio Mathematica (1988)

- Volume: 68, Issue: 2, page 221-239
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topNaito, Hisashi. "A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations." Compositio Mathematica 68.2 (1988): 221-239. <http://eudml.org/doc/89936>.

@article{Naito1988,

author = {Naito, Hisashi},

journal = {Compositio Mathematica},

keywords = {existence; stable and an unstable manifold; quasi-linear; closed Riemannian manifold; gradient flow; harmonic map; energy integral; Yang- Mills functional},

language = {eng},

number = {2},

pages = {221-239},

publisher = {Kluwer Academic Publishers},

title = {A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations},

url = {http://eudml.org/doc/89936},

volume = {68},

year = {1988},

}

TY - JOUR

AU - Naito, Hisashi

TI - A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations

JO - Compositio Mathematica

PY - 1988

PB - Kluwer Academic Publishers

VL - 68

IS - 2

SP - 221

EP - 239

LA - eng

KW - existence; stable and an unstable manifold; quasi-linear; closed Riemannian manifold; gradient flow; harmonic map; energy integral; Yang- Mills functional

UR - http://eudml.org/doc/89936

ER -

## References

top- 1 Th. Aubin: Nonlinear analysis on manifolds, Monge-Amperé equations. Springer-Verlag, Berlin-Heiderberg -New York (1983). Zbl0512.53044MR681859
- 2 N. Chafee and E. Infant: A bifurcation problem for a nonlinear parabolic equation. J. Appl. Anal.4 (1974) 17-37. Zbl0296.35046MR440205
- 3 J. Eells and L. Lemaire: Selected topics in harmonic maps. C.B.M.S. Regional Conference Series in Math. Vol. 50, (1983). Zbl0515.58011MR703510
- 4 J. Eells and J.H. Sampson: Variational theory in fiber bundles. Proc. U.S. Japan Seminar in Diff. Geom. (1965) pp. 22-33. Zbl0192.29801MR216519
- 5 J. Eells and J.H. Sampson: Harmonic mapping of Riemannian manifolds. Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
- 6 C.L. Epstein and M.I. Weinstein: A stable manifold theorem for the curve shortening equation. Comm. Pure Appl. Math.40 (1987) 119-139. Zbl0602.34026MR865360
- 7 D. Gillberg and N.S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heiderberg -New York (1983). Zbl0562.35001MR737190
- 8 M. Gage and R.S. Hamilton: The equation shrinking convex plain curves. J. Diff. Geom.23 (1986) 69-96. Zbl0621.53001MR840401
- 9 D. Henry: Geometric Theory of Semilinear Parabolic Equations. L.N.M.840, Springer-Verlag, Berlin-Heiderberg- New York (1981). Zbl0456.35001MR610244
- 10 R.S. Hamilton: Harmonic Maps of Manifolds with Boundary. L.N.M.471, Springer-Verlag, Berlin-Heiderberg- New York (1975). Zbl0308.35003MR482822
- 11 R. Palais: Foundations in Non-linear Global Analysis, Benjamin. New York (1967). Zbl0164.11102
- 12 I. Mogi and M. Ito: Differential Geometry and Gauge Theory (in Japanese). Kyoritsu, Tokyo (1986).
- 13 H. Naito: Asymptotic behavior of solutions to Eells-Sampson equations near stable harmonic maps. preprint. Zbl0688.58007MR1017578
- 14 H. Naito: Asymptotic behavior of non-linear heat equations in geometric variational problems. preprint.
- 15 L. Simon: Asymptotic for a class of non-linear evolution equations, with applications to geometric problem. Ann. of Math.118 (1983) 525-571. Zbl0549.35071
- 16 L. Simon: Asymptotic behaviour near isolated singular points for geometric variational problems. Proc. Centre for Math. Anal., Australian National University, (Proceeding of Miniconference on Geometry and Partial Differential Equations) Vol. 10 (1985) pp. 1-7. Zbl0606.58016MR857649

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.