On the unitary dual of some classical Lie groups

Susana Salamanca Riba

Compositio Mathematica (1988)

  • Volume: 68, Issue: 3, page 251-303
  • ISSN: 0010-437X

How to cite

top

Salamanca Riba, Susana. "On the unitary dual of some classical Lie groups." Compositio Mathematica 68.3 (1988): 251-303. <http://eudml.org/doc/89938>.

@article{SalamancaRiba1988,
author = {Salamanca Riba, Susana},
journal = {Compositio Mathematica},
keywords = {unitary dual; fundamental K-type; complementary series; real groups; special unipotent representations; integral infinitesimal character; real reductive Lie group; irreducible unitary Harish-Chandra module; irreducible unitary representations; relative Lie algebra cohomology},
language = {eng},
number = {3},
pages = {251-303},
publisher = {Kluwer Academic Publishers},
title = {On the unitary dual of some classical Lie groups},
url = {http://eudml.org/doc/89938},
volume = {68},
year = {1988},
}

TY - JOUR
AU - Salamanca Riba, Susana
TI - On the unitary dual of some classical Lie groups
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 68
IS - 3
SP - 251
EP - 303
LA - eng
KW - unitary dual; fundamental K-type; complementary series; real groups; special unipotent representations; integral infinitesimal character; real reductive Lie group; irreducible unitary Harish-Chandra module; irreducible unitary representations; relative Lie algebra cohomology
UR - http://eudml.org/doc/89938
ER -

References

top
  1. J. Adams: Discrete spectrum of the dual pair (0(p, q), Sp(2m)). Invent. Math.74 (1983) 449-475. Zbl0561.22011MR724015
  2. J. Adams: Unitary highest weight modules. Advances in Math.63 (1987) 113-137. Zbl0623.22014MR872349
  3. J. Arthur: On some problems suggested by the trace formula. SLN1041 (1984) 1-50. Zbl0541.22011MR748504
  4. M.W. Baldoni Silva and D. Barbasch: The unitary spectrum for real rank one groups. Invent. Math.72 (1983) 27-55. Zbl0561.22009MR696689
  5. D. Barbasch: Unipotent representations for complex semisimple groups II. Preprint (1987). Zbl0629.22007MR897538
  6. D. Barbasch and D. Vogan: Unipotent representations for complex semisimple groups. Ann. Math.121 (1985) 41-110. Zbl0582.22007MR782556
  7. A. Borel and N. Wallach: Continuous cohomology, discrete subgroups and representations of reductive groups. Annals of Mathematics Studies Vol. 94. Princeton University Press (1980). Zbl0443.22010MR554917
  8. J. Dixmier: Enveloping Algebras. North Holland Publishing Co., Amsterdam, N.Y., Oxford (1977). Zbl0339.17007MR498740
  9. M. Duflo and M. Vergne: Sur le foncteur de Zuckerman. C.R. Acad. Sci. Paris, t. 304 Serie I, no. 16 (1987) pp. 467-469. Zbl0617.17007MR894570
  10. T.J. Enright: Relative Lie algebra cohomology and unitary representations of complex Lie groups. Duke Math. J.46 (1979) 513-525. Zbl0427.22010MR544243
  11. T.J. Enright: Unitary representations for two real forms of a semisimple Lie algebra: a theory of comparison. In: Proc. Special Year in Harmonic Analysis, University of Maryland Lecture Notes in Math. Vol. 1024 (1984) pp. 1-29. Springer-Verlag, Berlin-Heidelberg -New York-Tokyo. Zbl0531.22012MR727848
  12. T.J. Enright and N.R. Wallach: Notes on homological algebra and representations of Lie algebras. Duke Math. J.47 (1980) 1-15. Zbl0429.17012MR563362
  13. Harish-Chandra: Representations of semisimple Lie groups I. Trans. AMS75 (1953) 185-243. Zbl0051.34002MR56610
  14. A.W. Knapp and D.A. Vogan Jr: Cohomological induction and unitary representations, Preprint. 
  15. A. Knapp and G. Zuckerman: Classification theorems for representations of semisimple Lie groups. In: Non-Commutative Harmonic Analysis. Lecture Notes in Math. Vol. 587 (1976) pp. 138-159. Zbl0353.22011MR476923
  16. R. Langlands: (1973) On the classification of irreducible representations of real algebraic groups. Mimeographed notes, Institute for Advanced Study (1973). 
  17. S. Salamanca Riba: On unitary representations with regular infinitesimal character. Thesis dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts (1986). 
  18. W. Schmid: On the characters of discrete series (the Hermitian symmetric case). Inventiones Math.30 (1975) 47-144. Zbl0324.22007MR396854
  19. B. Speh: Unitary representations of SL(n, R) and the cohomology of congruence subgroups. In: J. Carmona and M. Vergne (Eds.) Non-Commutative Harmonic Analysis and Lie groups. Lecture Notes in Math. Vol. 880 (1981) pp. 483-505. Zbl0516.22008MR644844
  20. B. Speh and D. Vogan: Reducibility of generalized principal series representations. Acta Math.145 (1980) 227-229. Zbl0457.22011MR590291
  21. D. Vogan: The algebraic structure of the representations of semisimple Lie groups I. Ann. Math.109 (1979) 1-60. Zbl0424.22010MR519352
  22. D. Vogan: Representations of Real Reductive Lie Groups. Birkhauser, Boston-Basel- Stuttgart (1981). Zbl0469.22012MR632407
  23. D. Vogan: Unitarizability of certain series of representations. Annals Math.120 (1984) 141-187. Zbl0561.22010MR750719
  24. D. Vogan: The unitary dual of GL(n) over an Archimedian field. Inv. Math.83 (1986) 449-505. Zbl0598.22008MR827363
  25. D. Vogan and G. Zuckerman: Unitary representations with non-zero cohomology. Compositio Mathematica53 (1984) 51-90. Zbl0692.22008MR762307
  26. D. Wigner: Sur l'homologic relative des algèbres de Lie et une conjecture de Zuckerman. C.R. Acad. Sci. Paris, t 305, Série I (1987) pp. 59-62. Zbl0617.17006MR901135
  27. G. Zuckerman: On construction of representations by derived factors. Handwritten Notes (1977). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.