On the space of asymptotically euclidean metrics

Lars Andersson

Compositio Mathematica (1989)

  • Volume: 69, Issue: 1, page 61-81
  • ISSN: 0010-437X

How to cite


Andersson, Lars. "On the space of asymptotically euclidean metrics." Compositio Mathematica 69.1 (1989): 61-81. <http://eudml.org/doc/89943>.

author = {Andersson, Lars},
journal = {Compositio Mathematica},
keywords = {space of metrics; group of diffeomorphisms; asymptotically Euclidean metrics},
language = {eng},
number = {1},
pages = {61-81},
publisher = {Kluwer Academic Publishers},
title = {On the space of asymptotically euclidean metrics},
url = {http://eudml.org/doc/89943},
volume = {69},
year = {1989},

AU - Andersson, Lars
TI - On the space of asymptotically euclidean metrics
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 1
SP - 61
EP - 81
LA - eng
KW - space of metrics; group of diffeomorphisms; asymptotically Euclidean metrics
UR - http://eudml.org/doc/89943
ER -


  1. 1 Bott, R. and Seeley, R.: Some remarks on a paper by Callias, Comm. Math. Phys.62 (1978) 235-245. Zbl0409.58019MR507781
  2. 2 Bourguignon, J.P.: Une stratification de l'espace des structures Riemanniennes, Comp. Math.30 (1975) 1-41. Zbl0301.58015MR418147
  3. 3 Cantor, M.: Spaces of functions with asymptotic conditions, Indiana Univ. Math. J.24 (1974) 897-902. Zbl0441.46028MR365621
  4. 4 Cantor, M.: Some problems of global analysis on asymptotically simple manifolds, Comp. Math.38 (1979) 3-35. Zbl0402.58004MR523260
  5. 5 Cantor, M.: Elliptic operators and the decomposition of tensor fields, Bull. A.M.S.5 (1981) 235-262. Zbl0481.58023MR628659
  6. 6 Choquet-Bruhat, Y., Fischer, A.E. and Marsden, J.E.: in J. Ehlers (ed.) Maximal Hyper-surfaces and Positivity of Mass, pp. 396-456, Italian Physical Society (1979). 
  7. 7 Choquet-Bruhat, Y. and Christodoulou, D.: Elliptic systems in Hs,δ spaces on manifolds which are Euclidean at infinity, Acta. Math.146 (1981) 129-150. Zbl0484.58028
  8. 8 Christodoulou, D. and O-Murchadha, N.: The Boost problem in general relativity, Comm. Math. Phys.80 (1980) 271-300. Zbl0477.35081MR623161
  9. 9 Ebin, D.: On the Space of Riemannian Metrics, Proc. A.M.S. Symp. Pure Math., Vol. 15, pp. 11-40, Am. Math. Soc., Providence, R.I. (1970). Zbl0205.53702MR267604
  10. 10 Fischer, A.: The theory of superspace, in L. Witten (ed.) Relativity, Plenum Press, New York (1970). MR347323
  11. 11 Isenberg, J. and Marsden, J.E.: A slice theorem for the space of solutions of Einsteins equations, Physics Reports89 (1982) 179-222. MR700931
  12. 12 Kobayashi, S.: Transformation Groups in Differential Geometry, Ergebnisse der Math., 70, Springer-Verlag, New York (1972). Zbl0246.53031MR355886
  13. 13 Lang, S.: Differential Manifolds, Addison-Wesley, Reading, Mass. (1972). Zbl0239.58001MR431240
  14. 14 Lockhart, R.B. and McOwen, R.C.: On elliptic systems in Rn, Acta Math.150 (1983) 125-135. Zbl0517.35031MR697610
  15. 15 Lockhart, R.B. and McOwen, R.C.: Correction to On elliptic systems in R n, Acta Math. (1984) 153. Zbl0569.35027MR766267
  16. 16 Nirenberg, L. and Walker, H.: Nullspaces of elliptic partial differential operators in Rn, J. Math. Anal. Appl.42 (1973) 271-230. Zbl0272.35029MR320821
  17. 17 O-Murchadha, N.: Total Energy Momentum in General Relativity, Preprint, Physics dept., U. College of Cork, Ireland. To appear in J. Math. Phys. Zbl0603.53045MR850597
  18. 18 Omori, H.: Infinite Dimensional Lie Transformation Groups, Lecture Notes in Mathematics, 427, Springer, Berlin (1974). Zbl0328.58005MR431262
  19. 19 York, J.: Kinematics and dynamics of general relativity, in Smarr, L. (ed.) Sources of Gravitational Radiation, pp. 83-126, Cambridge U.P., Cambridge (1979). Zbl0418.58016MR592635

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.