Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry

J. M. Coron; F. Helein

Compositio Mathematica (1989)

  • Volume: 69, Issue: 2, page 175-228
  • ISSN: 0010-437X

How to cite


Coron, J. M., and Helein, F.. "Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry." Compositio Mathematica 69.2 (1989): 175-228. <http://eudml.org/doc/89946>.

author = {Coron, J. M., Helein, F.},
journal = {Compositio Mathematica},
keywords = {harmonic map; energy; minimizing map; SO(n)-equivariant map; harmonic diffeomorphisms; Riemannian manifold},
language = {eng},
number = {2},
pages = {175-228},
publisher = {Kluwer Academic Publishers},
title = {Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry},
url = {http://eudml.org/doc/89946},
volume = {69},
year = {1989},

AU - Coron, J. M.
AU - Helein, F.
TI - Harmonic diffeomorphisms, minimizing harmonic maps and rotational symmetry
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 2
SP - 175
EP - 228
LA - eng
KW - harmonic map; energy; minimizing map; SO(n)-equivariant map; harmonic diffeomorphisms; Riemannian manifold
UR - http://eudml.org/doc/89946
ER -


  1. [ABL] F. Almgren, W. Browder and E.H. Lieb: Coarea, liquid crystals, and minimal surfaces, DD7-A selection of Papers, Springer-Verlag, New-York, 1987. 
  2. [B1] P. Baird: Harmonic morphisms into Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble37(1) (1987) 137-173. Zbl0608.58015MR894564
  3. [B2] P. Baird: Harmonic maps with symmetry, harmonic morphisms and deformations of metricsResearch Notes in Math. 87, Pitman (1983). Zbl0515.58010MR716320
  4. [BE] P. Baird and J. Eells: A conservation law for harmonic maps, geometry, Symp.Utrecht (1980), Lecture Notes in Math.894, Springer-Verlag (1981), pp. 1-25. Zbl0485.58008MR655417
  5. [BW] P. Baird and J.C. Wood: Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann.280 (1988) 579-603. Zbl0621.58011MR939920
  6. [B] A. Baldes, Stability and uniqueness properties of the equator map from a ball into an ellipsoid, Math. Z.185 (1984), 505-516. Zbl0513.58021MR733770
  7. [BCD] A. Bernard, E.A. Campbell and A.M. Davie: Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29(1) (1979) 207-208. Zbl0386.30029MR526785
  8. [BZ] F. Bethuel and X. Zheng: Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Analysis, to appear. Zbl0657.46027MR960223
  9. [BCL] H. Brezis, J.M. Coron and E. Lieb, Harmonic maps with defects, Commun. Math. Phys.107 (1986) 649-705. Zbl0608.58016MR868739
  10. [CG] J.M. Coron and R. Gulliver: Minimizing p-Harmonic maps into spheres, preprint. Zbl0677.58021MR1018054
  11. [EL] J. Eells and L. Lemaire: Report on harmonic maps, Bull. London Math. Soc.10 (1978) 1-68. Zbl0401.58003MR495450
  12. [ES] J. Eells and J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J. Math.86 (1964) 109-160. Zbl0122.40102MR164306
  13. [F] H. Federer: Geometric Measure Theory, Berlin- Heidelberg-New-York, Springer (1969). Zbl0176.00801MR257325
  14. [GW] R. Gulliver and B. White: The rate of convergence of a harmonic map at a singular point, Math. Ann. (to appear). Zbl0645.58018MR990588
  15. [Ham] R. Hamilton: Harmonic maps of manifolds with boundary, Lectures Notes in Math.Springer-Verlag471 (1975). Zbl0308.35003MR482822
  16. [HKL] R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys.105 (1986) 547-570. Zbl0611.35077MR852090
  17. [HL] R. Hardt and F.H. Lin: Mappings that minimize the pth power of the gradient, preprint. 
  18. [Ha1] P. Hartman: On homotopic harmonic maps, Canad. J. Math.19 (1967) 673-687. Zbl0148.42404MR214004
  19. [Ha2] P. Hartman: Ordinary differential equations, New-York (1964). Zbl0125.32102MR171038
  20. [He] F. Hélein: Regularity and uniqueness of harmonic maps into an ellipsoid, Manuscripta Math.60 (1988) 235-257. Zbl0646.58020MR924091
  21. [JK] W. Jäger and H. Kaul: Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math.343 (1983) 146-161. Zbl0516.35032MR705882
  22. [J] J. Jost: Harmonic maps between surfaces, Lectures Notes in Math., Springer Verlag, 1062 (1984). Zbl0542.58002MR754769
  23. [JS] J. Jost and R. Schoen: On the existence of harmonic diffeomorphisms between surfacesInv. Math.66 (1982) 549-561. Zbl0488.58009MR656629
  24. [La] J.P. La Salle: Stability theory for ordinary differential equations, J. Differential Equations4 (1968) 57-65. Zbl0159.12002MR222402
  25. [Le1] L. Lemaire: Applications harmoniques de surfaces Riemanniennes, J. Diff. Geom.13 (1978) 51-78. Zbl0388.58003MR520601
  26. [Le2] L. Lemaire: Boundary value problems for harmonic maps and minimal maps of surfaces into manifolds, Ann. Scuola Norm. Sup. Pisa9 (1982) 91-103. Zbl0532.58004MR664104
  27. [Li] F.H. Lin: A remark on the map x/|x|, C.R. Acad. Sci. Paris, t. 305, Série I (1987), pp. 529-531. Zbl0652.58022MR916327
  28. [M] C.B. Morrey: The problem of Plateau on a Riemannian manifold, Ann. of Math.49 (1948) 807-851. Zbl0033.39601MR27137
  29. [SU] J. Sacks and K. Uhlenbeck: The existence of minimal immersions of 2-spheres, Ann. of Math.113 (1981) 1-24. Zbl0462.58014MR604040
  30. [S1] R. Schoen: Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential Equations, edited by S.S. Chern, MAth. sc. Research Institute Publications. Zbl0551.58011
  31. [S2] R. Schoen: Existence and regularity for some geometric variational problems, Thesis Stanford Univ. (1977). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.