Unipotent representations and Dixmier algebras

William M. McGovern

Compositio Mathematica (1989)

  • Volume: 69, Issue: 3, page 241-276
  • ISSN: 0010-437X

How to cite

top

McGovern, William M.. "Unipotent representations and Dixmier algebras." Compositio Mathematica 69.3 (1989): 241-276. <http://eudml.org/doc/89948>.

@article{McGovern1989,
author = {McGovern, William M.},
journal = {Compositio Mathematica},
keywords = {orbit method; primitive ideals; complex semisimple Lie group; universal enveloping algebra; Dixmier algebra; strongly prime},
language = {eng},
number = {3},
pages = {241-276},
publisher = {Kluwer Academic Publishers},
title = {Unipotent representations and Dixmier algebras},
url = {http://eudml.org/doc/89948},
volume = {69},
year = {1989},
}

TY - JOUR
AU - McGovern, William M.
TI - Unipotent representations and Dixmier algebras
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 3
SP - 241
EP - 276
LA - eng
KW - orbit method; primitive ideals; complex semisimple Lie group; universal enveloping algebra; Dixmier algebra; strongly prime
UR - http://eudml.org/doc/89948
ER -

References

top
  1. D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex classical groups, Math. Ann.259 (1982) 152-199. Zbl0489.22010MR656661
  2. D. Barbasch and D. Vogan, Primitive ideals and orbital integrals in complex exceptional groups, J. Alg.80 (1983) 350-382. Zbl0513.22009MR691809
  3. D. Barbasch and D. Vogan, Unipotent representations of complex semisimple groups, Ann. of Math.121 (1985) 41-110. Zbl0582.22007MR782556
  4. D. Garfinkle, A new construction of the Joseph ideal, Ph.D. dissertation, M.I.T. (1982). 
  5. R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin/Heidelberg/New York (1977). Zbl0367.14001MR463157
  6. I.N. Herstein, Noncommutative Rings, Carus Mathematical Monographs, No. 19, Mathematical Association of America (1968). Zbl0177.05801MR1449137
  7. G. Hochschild and G.D. Mostow, Unipotent groups in invariant theory, Proc. Nat. Acad. Sci., U.S.A.70 (1973) 646-648. Zbl0262.14004MR320174
  8. N. Jacobson, Basic Algebra II, W.H. Freeman and Company (1974). Zbl0441.16001MR1009787
  9. N. Jacobson, Structure of Rings, American Mathematical Society Colloquium Publications, Vol. XXXVIII, American Mathematical Society (1956). Zbl0073.02002MR81264
  10. A. Joseph, Kostant's problem, Goldie rank, and the Gelfand-Kirillov conjecture, Inv. Math.56 (1980) 191-213. Zbl0446.17006MR561970
  11. G. Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad.A82 (1979) 323-335. Zbl0435.20021MR546372
  12. G. Lusztig, Characters of a Reductive Group over a Finite Field, Princeton University Press, Princeton, NJ (1984). Zbl0556.20033MR742472
  13. J McConnell, Filtered and graded rings and the Noetherian property, preprint, Leeds (1984). 
  14. W McGovern, Primitive ideals and nilpotent orbits in complex semisimple Lie algebras, Ph.D. dissertation, M.I.T., 1987. 
  15. C. Moeglin, Modèles de Whittaker et idéaux primitifs complètement premiers dans les algèbres enveloppantes, preprint (1986). Zbl0628.17007MR870903
  16. C. Moeglin, Modèles de Whittaker et idèaux primitifs complètement premiers dans les algèbres enveloppantes des alèbres de Lie semi-simples complexes, preprint (1986). Zbl0628.17007MR870903
  17. E. Spanier, Algebraic Topology, Springer-Verlag, Berlin/Heidelberg/New York (1966). MR666554
  18. D. Vogan, The orbit method and primitive ideals for semisimple Lie algebras, in Lie Algebras and Related Topics, CMS Conference Proceedings, volume 5, D. Britten, F. Lemire, and R. Moody, eds., American Mathematical Society for CMS, Providence, Rhode Island (1986). Zbl0585.17008MR832204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.