# Invariant theory for ${S}_{5}$ and the rationality of ${M}_{6}$

Compositio Mathematica (1989)

- Volume: 70, Issue: 1, page 13-25
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topShepherd-Barron, N. I.. "Invariant theory for $S_5$ and the rationality of $M_6$." Compositio Mathematica 70.1 (1989): 13-25. <http://eudml.org/doc/89953>.

@article{Shepherd1989,

author = {Shepherd-Barron, N. I.},

journal = {Compositio Mathematica},

keywords = {rationality of quotient varieties; rationality of moduli space; invariant theory},

language = {eng},

number = {1},

pages = {13-25},

publisher = {Kluwer Academic Publishers},

title = {Invariant theory for $S_5$ and the rationality of $M_6$},

url = {http://eudml.org/doc/89953},

volume = {70},

year = {1989},

}

TY - JOUR

AU - Shepherd-Barron, N. I.

TI - Invariant theory for $S_5$ and the rationality of $M_6$

JO - Compositio Mathematica

PY - 1989

PB - Kluwer Academic Publishers

VL - 70

IS - 1

SP - 13

EP - 25

LA - eng

KW - rationality of quotient varieties; rationality of moduli space; invariant theory

UR - http://eudml.org/doc/89953

ER -

## References

top- 1 F.A. Bogomolov and P.I. Katsylo: Rationality of some quotient varieties (in Russian), Mat. Sbornik126 (1985), 584-589. Zbl0591.14040MR788089
- 2 W. Fulton: Intersection Theory, Springer, 1984. Zbl0541.14005MR732620
- 3 J.H. Grace and A. Young: The Algebra of invariants, Cambridge, 1903. Zbl34.0114.01JFM34.0114.01
- 4 D. Mumford and J. Fogarty: Geometric Invariant Theory, 2nd edn., Springer, 1982. Zbl0504.14008MR719371
- 5 J.G. Semple and L. Roth: Introduction to Algebraic Geometry, Oxford, 1949 (reprinted, 1985). Zbl0041.27903MR34048
- 6 C.S. Seshadri: Geometric reductivity over an arbitrary base, Adv. in Math.26 (1977), 225-274. Zbl0371.14009MR466154
- 7 H. Weber: Lehrbuch der Algebra, vol. 1, Brunswick, 1898. Zbl29.0064.01JFM29.0064.01

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.