Residues of singular holomorphic foliations
Compositio Mathematica (1989)
- Volume: 70, Issue: 3, page 227-243
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSertöz, Sinan. "Residues of singular holomorphic foliations." Compositio Mathematica 70.3 (1989): 227-243. <http://eudml.org/doc/89962>.
@article{Sertöz1989,
author = {Sertöz, Sinan},
journal = {Compositio Mathematica},
keywords = {Chern classes; Holomorphic foliations with singularities; residues; rationality conjecture; vector bundles; sheaves},
language = {eng},
number = {3},
pages = {227-243},
publisher = {Kluwer Academic Publishers},
title = {Residues of singular holomorphic foliations},
url = {http://eudml.org/doc/89962},
volume = {70},
year = {1989},
}
TY - JOUR
AU - Sertöz, Sinan
TI - Residues of singular holomorphic foliations
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 70
IS - 3
SP - 227
EP - 243
LA - eng
KW - Chern classes; Holomorphic foliations with singularities; residues; rationality conjecture; vector bundles; sheaves
UR - http://eudml.org/doc/89962
ER -
References
top- 1 P. Baum, R. Bott: Singularities of Holomorphic Foliations, J. Differential Geo.7 (1972) 279-342. Zbl0268.57011MR377923
- 2 P. Baum, W. Fulton, R. MacPherson: Riemann-Roch for Singular Varieties, Publ. Math. IHES45 (1975) 101-145. Zbl0332.14003MR412190
- 3 W. Fulton: Intersection Theory, Springer-Verlag (1984). Zbl0541.14005MR732620
- 4 P A. Griffiths, J.Harris: Principles of Algebraic Geometry, John Wiley and Sons (1978). Zbl0408.14001MR507725
- 5 A. Nobile: Some properties of the Nash blowing-up, Pacific J. Math.60 (1975) 297-305. Zbl0324.32012MR409462
- 6 O. Riemenschneider: Characterizing Moisězon spaces by almost positive coherent analytic sheaves, Math. Zeit.123 (1971) 263-284. Zbl0214.48501MR294714
- 7 H. Rossi: Picard variety of an isolated singular point, Rice Univ. Studies, 54 (1968), 63-73. Zbl0179.40103MR244517
- 8 S. Sertöz: Singular Holomorphic Foliations, thesisUBC (1984).
- 9 S. Sertöz: C*-actions on Grassmann bundles and the cycle at infinity, Math. Scand.62 (1988) 5-18. Zbl0638.32028MR961580
- 10 A. Sommese: Extension theorems for reductive group actions on compact Kaehler manifolds, Math. Annal.218 (1975) 107-116. Zbl0299.32029MR393561
- 11 E. Spanier: Algebraic Topology, McGraw-Hill (1966). Zbl0145.43303MR210112
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.