Selmer group estimates arising from the existence of canonical subgroups

A. Klapper

Compositio Mathematica (1989)

  • Volume: 71, Issue: 2, page 121-137
  • ISSN: 0010-437X

How to cite

top

Klapper, A.. "Selmer group estimates arising from the existence of canonical subgroups." Compositio Mathematica 71.2 (1989): 121-137. <http://eudml.org/doc/89970>.

@article{Klapper1989,
author = {Klapper, A.},
journal = {Compositio Mathematica},
keywords = {Frobenius kernel; canonical subgroups of finite height commutative formal groups; local rings; flat cohomology groups; Selmer group of an abelian variety},
language = {eng},
number = {2},
pages = {121-137},
publisher = {Kluwer Academic Publishers},
title = {Selmer group estimates arising from the existence of canonical subgroups},
url = {http://eudml.org/doc/89970},
volume = {71},
year = {1989},
}

TY - JOUR
AU - Klapper, A.
TI - Selmer group estimates arising from the existence of canonical subgroups
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 71
IS - 2
SP - 121
EP - 137
LA - eng
KW - Frobenius kernel; canonical subgroups of finite height commutative formal groups; local rings; flat cohomology groups; Selmer group of an abelian variety
UR - http://eudml.org/doc/89970
ER -

References

top
  1. 1 Z. Borevich and I. Shafarevič, Number Theory, Academic Press, New York (1966). Zbl0145.04902MR195803
  2. 2 E.J. Ditters, Higher Hasse-Witt matrices, Journées de Géometrie Algébrique de Rennes 1 (1978), Astérisque, Soc. Math. de Fr., 63 (1979) 67-71. Zbl0426.14021
  3. 3 A. Grothendieck, Technique de descente et theoremes d'existence en géometrie algébrique, Séminaire Bourbaki190 (1959). Zbl0229.14007
  4. 4 M. Hazewinkel, Formal Groups and Applications. Academic Press: New York (1978). Zbl0454.14020MR506881
  5. 5 J. Lubin, The canonicity of a cyclic subgroup of an elliptic curve, Journées de Géometrie Algébrique de Rennes1 (1978), Astérique, Soc. Math. de Fr.63 (1979) 165-167. Zbl0426.14020MR563464
  6. 6 J. Lubin, Canonical subgroups of formal groups. Trans. Am. Math. Soc.251 (1979) 103-127. Zbl0431.14014MR531971
  7. 7 J. Lubin and J. Tate, Formal moduli for one parameter formal Lie groups, Bull. Soc. Math. de Fr.85 (1967) 49-60. Zbl0156.04105MR238854
  8. 8 B. Mazur, Local flat duality, Amer. J. of Math.92 (1970) 201-223. Zbl0199.24501MR271119
  9. 9 B. Mazur and L. Roberts, Local Euler characteristic. Inventiones Math.9 (1970) 201-234. Zbl0191.19202MR258844
  10. 10 L. Roberts, The flat cohomology of group schemes, Ph.D. Thesis, Harvard Univ. (1968). 
  11. 11 L. Roberts, The flat cohomology of group schemes of rank p, Am. J. Math.95 (1973) 688-702. Zbl0281.14020MR337972
  12. 12 J. Tate, p-divisible groups, Proc. of a Conf. on Local Fields, T.A. Springer, Springer-Verlag, Berlin and New York (1979) pp. 158-183. Zbl0157.27601MR231827

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.