Selmer group estimates arising from the existence of canonical subgroups
Compositio Mathematica (1989)
- Volume: 71, Issue: 2, page 121-137
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKlapper, A.. "Selmer group estimates arising from the existence of canonical subgroups." Compositio Mathematica 71.2 (1989): 121-137. <http://eudml.org/doc/89970>.
@article{Klapper1989,
author = {Klapper, A.},
journal = {Compositio Mathematica},
keywords = {Frobenius kernel; canonical subgroups of finite height commutative formal groups; local rings; flat cohomology groups; Selmer group of an abelian variety},
language = {eng},
number = {2},
pages = {121-137},
publisher = {Kluwer Academic Publishers},
title = {Selmer group estimates arising from the existence of canonical subgroups},
url = {http://eudml.org/doc/89970},
volume = {71},
year = {1989},
}
TY - JOUR
AU - Klapper, A.
TI - Selmer group estimates arising from the existence of canonical subgroups
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 71
IS - 2
SP - 121
EP - 137
LA - eng
KW - Frobenius kernel; canonical subgroups of finite height commutative formal groups; local rings; flat cohomology groups; Selmer group of an abelian variety
UR - http://eudml.org/doc/89970
ER -
References
top- 1 Z. Borevich and I. Shafarevič, Number Theory, Academic Press, New York (1966). Zbl0145.04902MR195803
- 2 E.J. Ditters, Higher Hasse-Witt matrices, Journées de Géometrie Algébrique de Rennes 1 (1978), Astérisque, Soc. Math. de Fr., 63 (1979) 67-71. Zbl0426.14021
- 3 A. Grothendieck, Technique de descente et theoremes d'existence en géometrie algébrique, Séminaire Bourbaki190 (1959). Zbl0229.14007
- 4 M. Hazewinkel, Formal Groups and Applications. Academic Press: New York (1978). Zbl0454.14020MR506881
- 5 J. Lubin, The canonicity of a cyclic subgroup of an elliptic curve, Journées de Géometrie Algébrique de Rennes1 (1978), Astérique, Soc. Math. de Fr.63 (1979) 165-167. Zbl0426.14020MR563464
- 6 J. Lubin, Canonical subgroups of formal groups. Trans. Am. Math. Soc.251 (1979) 103-127. Zbl0431.14014MR531971
- 7 J. Lubin and J. Tate, Formal moduli for one parameter formal Lie groups, Bull. Soc. Math. de Fr.85 (1967) 49-60. Zbl0156.04105MR238854
- 8 B. Mazur, Local flat duality, Amer. J. of Math.92 (1970) 201-223. Zbl0199.24501MR271119
- 9 B. Mazur and L. Roberts, Local Euler characteristic. Inventiones Math.9 (1970) 201-234. Zbl0191.19202MR258844
- 10 L. Roberts, The flat cohomology of group schemes, Ph.D. Thesis, Harvard Univ. (1968).
- 11 L. Roberts, The flat cohomology of group schemes of rank p, Am. J. Math.95 (1973) 688-702. Zbl0281.14020MR337972
- 12 J. Tate, p-divisible groups, Proc. of a Conf. on Local Fields, T.A. Springer, Springer-Verlag, Berlin and New York (1979) pp. 158-183. Zbl0157.27601MR231827
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.