Some properties of positive superharmonic functions

Rein L. Zeinstra

Compositio Mathematica (1989)

  • Volume: 72, Issue: 1, page 115-120
  • ISSN: 0010-437X

How to cite

top

Zeinstra, Rein L.. "Some properties of positive superharmonic functions." Compositio Mathematica 72.1 (1989): 115-120. <http://eudml.org/doc/89980>.

@article{Zeinstra1989,
author = {Zeinstra, Rein L.},
journal = {Compositio Mathematica},
keywords = {reversed Hölder inequality; positive superharmonic functions; radial limit theorem},
language = {eng},
number = {1},
pages = {115-120},
publisher = {Kluwer Academic Publishers},
title = {Some properties of positive superharmonic functions},
url = {http://eudml.org/doc/89980},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Zeinstra, Rein L.
TI - Some properties of positive superharmonic functions
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 1
SP - 115
EP - 120
LA - eng
KW - reversed Hölder inequality; positive superharmonic functions; radial limit theorem
UR - http://eudml.org/doc/89980
ER -

References

top
  1. 1. B. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain. Indiana Univ. Math. J.27 (1978) 515-526. Zbl0402.31011MR486569
  2. 2. B. Davis, and J. Lewis, Paths for subharmonic functions. Proc. London Math. Soc.48 (1984) 401-427. Zbl0541.31001MR735222
  3. 3. J. Deny, Un théorème sur les ensembles effilés. Ann. Univ. Grenoble23 (1948) 139-142. Zbl0030.05602MR24531
  4. 3a. M. Essén, and H.L. Jackson, A comparision between thin sets and generalized Azarin sets. Canad. Math. Bull.18 (1975) 335-346. Zbl0318.31005MR409848
  5. 4. M. de Guzman, Différentiation of integrals in Rn. Lecture Notes in Maths. 481. Springer-Verl., Berlin1975. Zbl0327.26010
  6. 4a. L.S. Kudina, Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija14 (Charkov 1971). 
  7. 5. N.S. Landkof, Foundations of modern potential theory. Springer-Verl., Berlin1972. Zbl0253.31001MR350027
  8. 6. D.H. Luecking, Boundary behavior of Green potentials. Proc. Am. Math. Soc.96 (1986) 481-488. Zbl0594.31009MR822445
  9. 7. Y. Mizuta, Boundary limits of Green potentials of general order. Proc. Am. Math. Soc.101 (1987) 131-135. Zbl0659.31007MR897083
  10. 8. P.J. Rippon, On the boundary behaviour of Green potentials. Proc. London Math. Soc.38 (1979) 461-480. Zbl0417.31008MR532982
  11. 9. M. Stoll, Boundary limits of Green potentials in the unit disc. Arch. Math.44 (1985) 451-455. Zbl0553.31003MR792369
  12. 10. E. Tolsted, Limiting values of subharmonic functions. Proc. Am. Math. Soc.1 (1950) 636-647. Zbl0039.32403MR39862
  13. 11. K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand.21 (1967) 17-37. Zbl0164.13101MR239264
  14. 12. J.M. Wu, Content and harmonic measure - an extension of Hall's lemma. Indiana Univ. Math. J.36 (1987) 403-420. Zbl0639.31004MR891782
  15. 13. J.M. Wu, Boundary limits of Green's potentials along curves. Studia Math.60 (1977) 137-144. Zbl0354.31002MR499241

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.