Some properties of positive superharmonic functions

Rein L. Zeinstra

Compositio Mathematica (1989)

  • Volume: 72, Issue: 1, page 115-120
  • ISSN: 0010-437X

How to cite

top

Zeinstra, Rein L.. "Some properties of positive superharmonic functions." Compositio Mathematica 72.1 (1989): 115-120. <http://eudml.org/doc/89980>.

@article{Zeinstra1989,
author = {Zeinstra, Rein L.},
journal = {Compositio Mathematica},
keywords = {reversed Hölder inequality; positive superharmonic functions; radial limit theorem},
language = {eng},
number = {1},
pages = {115-120},
publisher = {Kluwer Academic Publishers},
title = {Some properties of positive superharmonic functions},
url = {http://eudml.org/doc/89980},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Zeinstra, Rein L.
TI - Some properties of positive superharmonic functions
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 1
SP - 115
EP - 120
LA - eng
KW - reversed Hölder inequality; positive superharmonic functions; radial limit theorem
UR - http://eudml.org/doc/89980
ER -

References

top
  1. 1. B. Dahlberg, On the existence of radial boundary values for functions subharmonic in a Lipschitz domain. Indiana Univ. Math. J.27 (1978) 515-526. Zbl0402.31011MR486569
  2. 2. B. Davis, and J. Lewis, Paths for subharmonic functions. Proc. London Math. Soc.48 (1984) 401-427. Zbl0541.31001MR735222
  3. 3. J. Deny, Un théorème sur les ensembles effilés. Ann. Univ. Grenoble23 (1948) 139-142. Zbl0030.05602MR24531
  4. 3a. M. Essén, and H.L. Jackson, A comparision between thin sets and generalized Azarin sets. Canad. Math. Bull.18 (1975) 335-346. Zbl0318.31005MR409848
  5. 4. M. de Guzman, Différentiation of integrals in Rn. Lecture Notes in Maths. 481. Springer-Verl., Berlin1975. Zbl0327.26010
  6. 4a. L.S. Kudina, Estimates for functions that can be represented as a difference of subharmonic functions in a ball (Russian). Teorija Funkcii, Funkcionalnij Analiz i Prilozjenija14 (Charkov 1971). 
  7. 5. N.S. Landkof, Foundations of modern potential theory. Springer-Verl., Berlin1972. Zbl0253.31001MR350027
  8. 6. D.H. Luecking, Boundary behavior of Green potentials. Proc. Am. Math. Soc.96 (1986) 481-488. Zbl0594.31009MR822445
  9. 7. Y. Mizuta, Boundary limits of Green potentials of general order. Proc. Am. Math. Soc.101 (1987) 131-135. Zbl0659.31007MR897083
  10. 8. P.J. Rippon, On the boundary behaviour of Green potentials. Proc. London Math. Soc.38 (1979) 461-480. Zbl0417.31008MR532982
  11. 9. M. Stoll, Boundary limits of Green potentials in the unit disc. Arch. Math.44 (1985) 451-455. Zbl0553.31003MR792369
  12. 10. E. Tolsted, Limiting values of subharmonic functions. Proc. Am. Math. Soc.1 (1950) 636-647. Zbl0039.32403MR39862
  13. 11. K.O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand.21 (1967) 17-37. Zbl0164.13101MR239264
  14. 12. J.M. Wu, Content and harmonic measure - an extension of Hall's lemma. Indiana Univ. Math. J.36 (1987) 403-420. Zbl0639.31004MR891782
  15. 13. J.M. Wu, Boundary limits of Green's potentials along curves. Studia Math.60 (1977) 137-144. Zbl0354.31002MR499241

NotesEmbed ?

top

You must be logged in to post comments.