Pseudoconvex domains on complex spaces with singularities

Mihnea Coltoiu; Nicolae Mihalache

Compositio Mathematica (1989)

  • Volume: 72, Issue: 3, page 241-247
  • ISSN: 0010-437X

How to cite

top

Coltoiu, Mihnea, and Mihalache, Nicolae. "Pseudoconvex domains on complex spaces with singularities." Compositio Mathematica 72.3 (1989): 241-247. <http://eudml.org/doc/89990>.

@article{Coltoiu1989,
author = {Coltoiu, Mihnea, Mihalache, Nicolae},
journal = {Compositio Mathematica},
keywords = {locally hyperconvex; Stein space; pseudoconvex domain},
language = {eng},
number = {3},
pages = {241-247},
publisher = {Kluwer Academic Publishers},
title = {Pseudoconvex domains on complex spaces with singularities},
url = {http://eudml.org/doc/89990},
volume = {72},
year = {1989},
}

TY - JOUR
AU - Coltoiu, Mihnea
AU - Mihalache, Nicolae
TI - Pseudoconvex domains on complex spaces with singularities
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 72
IS - 3
SP - 241
EP - 247
LA - eng
KW - locally hyperconvex; Stein space; pseudoconvex domain
UR - http://eudml.org/doc/89990
ER -

References

top
  1. [1] A. Andreotti and R. Narasimhan, Oka's Heftungslemma and the Levi problem for complex spaces. Trans. Amer. Math. Soc.111 (1964) 345-366. Zbl0134.06001MR159961
  2. [2] K. Diederich and J.E. Fornaess, Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions. Inv. Math.39 (1977) 129-141. Zbl0353.32025MR437806
  3. [3] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann.140 (1960) 94-123. Zbl0095.28004MR148939
  4. [4] G. Elencwajg, Pseudoconvexité locale dans les variétés Kählériennes. Ann. Inst. Fourier25 (1975) 295-314. Zbl0278.32015MR387662
  5. [5] J.L. Ermine, Conjecture de Serre et espaces hyperconvexes. Sém. Norguet. Lecture Notes670 (1978) 124-139. Zbl0392.32007MR521917
  6. [6] G. Fischer, Complex Analytic Geometry. Lecture Notes538 (1976). Zbl0343.32002MR430286
  7. [7] J.E. Fornaess, The Levi problem in Stein spaces. Math. Scand.45 (1979) 55-69. Zbl0436.32012MR567433
  8. [8] J.E. Fornaess and R. Narasimhan, The Levi problem on complex spaces with singularities. Math. Ann.248 (1980) 47-72. Zbl0411.32011MR569410
  9. [9] H. Grauert, Carakterisierung der holomorph-vollständigen komplexen Räume. Math. Ann.129 (1955) 233-259. Zbl0064.32603MR71084
  10. [10] H. Grauert, On Levi's problem and the imbedding of real-analytic manifolds. Ann. Math.68 (1958) 460-472. Zbl0108.07804MR98847
  11. [11] N. Kerzman and J.P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domains taut. Math. Ann.257 (1981) 171-184. Zbl0451.32012MR634460
  12. [12] R. Narasimhan, The Levi problem in the theory of functions of several complex variables. Proc. Internat. Congr. Math. (Stockholm 1962). Almgvist and Wilksells. Uppsala (1963) 385-388. Zbl0116.06103MR176096
  13. [13] R. Narasimhan, The Levi problem for complex spaces II. Math. Ann.146 (1962) 195-216. Zbl0131.30801MR182747
  14. [14] R. Narasimhan, On the homology groups of Stein spaces. Inv. Math.2 (1967) 377-385. Zbl0148.32202MR216525
  15. [15] K. Oka, Sur les fonctions analytiques des plusieurs variables. IX. Domaines finis sans points critiques intérierus. Japan. J. Math.23 (1953) 97-155. Zbl0053.24302MR71089
  16. [16] M. Peternell, Continuous q-convex exhaustion functions. Inv. Math.85 (1986) 249-262. Zbl0599.32016MR846928
  17. [17] Y.T. Siu, Pseudoconvexity and the problem of Levi. Bull. Amer. Math. Soc.84 (1978) 481-512. Zbl0423.32008MR477104
  18. [18] J.L. Stehle, Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques. Sém. Lelong. Lecture Notes474 (1973/74) 155-180. Zbl0309.32011MR399524

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.