The irreducible unitary GL ( n - 1 , ) -spherical representations of SL ( n , )

G. Van Dijk; M. Poel

Compositio Mathematica (1990)

  • Volume: 73, Issue: 1, page 1-30
  • ISSN: 0010-437X

How to cite


Van Dijk, G., and Poel, M.. "The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$." Compositio Mathematica 73.1 (1990): 1-30. <>.

author = {Van Dijk, G., Poel, M.},
journal = {Compositio Mathematica},
keywords = {involution; -fixed points; unitary irreducible representations; invariant distribution vector; symmetric space; spherical distributions},
language = {eng},
number = {1},
pages = {1-30},
publisher = {Kluwer Academic Publishers},
title = {The irreducible unitary $\mathrm \{GL\} (n-1,\mathbb \{R\})$-spherical representations of $\mathrm \{SL\} (n, \mathbb \{R\})$},
url = {},
volume = {73},
year = {1990},

AU - Van Dijk, G.
AU - Poel, M.
TI - The irreducible unitary $\mathrm {GL} (n-1,\mathbb {R})$-spherical representations of $\mathrm {SL} (n, \mathbb {R})$
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 1
SP - 1
EP - 30
LA - eng
KW - involution; -fixed points; unitary irreducible representations; invariant distribution vector; symmetric space; spherical distributions
UR -
ER -


  1. [Ba] J. Bang-Jensen: The Multiplicities of Certain K-types in Irreducible Spherical Representations of Semisimple Lie Groups. Thesis Massachusetts Institute of Technology, 1987. 
  2. [B-G] J.N. Bernstein and S.I. Gelfand: Tensor products of finite and infinite dimensional representations of semisimple Lie algebras. Comp. Math.41 (1980), p. 245-285. Zbl0445.17006MR581584
  3. [D-P] G van Dijk & M. Poel: The Plancherel formula for the pseudo-Riemannian space SL(n, R)/GL(n-1, R). Comp. Math.58 (1986) p. 371-397. Zbl0593.43009MR846911
  4. [D] J. Dixmier: Enveloping Algebras. North-Holland Publishing Company, Amsterdam/ New York/Oxford, 1977. Zbl0339.17007MR498740
  5. [Fa] J. Faraut: Distributions sphériques sur les espaces hyperboliques. J. Math. Pures et Appl.58 (1979), p. 369-444. Zbl0436.43011MR566654
  6. [F-K] M. Flensted-Jensen & T.H. Koornwinder: Positive definite spherical functions on a non-compact rank one symmetric space. In: Lect. Notes in Math. 739, Springer VerlagBerlin etc., 1979, p. 249-282. Zbl0433.43014MR560841
  7. [H] S. Helgason: A Duality for Symmetric Spaces with Applications to Group Representations I. Adv. Math.5 (1970), p. 1-154. Zbl0209.25403MR263988
  8. [Kn] A.W. Knapp: Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton University Press, Princeton N.J., 1986. Zbl0604.22001MR855239
  9. [Ko] B. Kostant: On the existence and irreducibility of certain series of representations. In: I.M. Gelfand (ed.) Lie groups and their representations, Halsted Press, New-York, 1975, p. 231-329.(See also Bull. A.M.S. 75 (1969), p. 627-642.) Zbl0229.22026MR245725
  10. [MKo] M.T. Kosters: Spherical distributions on rank one symmetric spaces. Thesis University of Leiden, 1983. 
  11. [MKo-D] M.T. Kosters & G. van Dijk: Spherical Distributions on the Pseudo-Riemannian space SL(n, R)/GL(n - 1, R). J. Funct. Anal.68 (1986), p. 168-213. Zbl0607.43008MR852659
  12. [WKo] W.A. Kosters: Eigenspaces of the Laplace-Beltrami operator on SL(n, R)/S(GL(1) x GL(n - 1)), I and II. Ind. Math.47 (1985), p. 99-145. Zbl0576.43006MR783010
  13. [M] V.F. Molčanov: The Plancherel formula for the pseudo-Riemannian space SL(3, R)/ GL(2, R). Sibirsk Math. J.23 (1982), p. 142-151. Zbl0515.22012MR673546
  14. [P] M. Poel: Harmonic Analysis on SL(n, R)/GL(n - 1, R). Thesis University of Utrecht, 1986. 
  15. [T] E.G.F. Thomas: The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs. In: K.D. Bierstedt and B. Fuchsteiner (eds.), Functional Analysis: Surveys and recent results III, Elseviers Science Publishers B.V. (North Holland) (1984). Zbl0564.43008MR761388
  16. [Va] V.S. Varadarajan: Harmonic Analysis on Real Reductive Groups. Lecture Notes in Mathematics, No. 576, Springer-Verlag, Berlin/ Heidelberg/New York, 1977. Zbl0354.43001MR473111
  17. [Vo1] D.A. Vogan: Representations of Real Reductive Lie Groups. Birkhäuser, Boston/ Basel/ Stuttgart, 1981. Zbl0469.22012MR632407
  18. [Vo2] D.A. Vogan: The unitary dual of GL(n) over an archimedian field. Invent. Math.83 (1985), p. 449-505. Zbl0598.22008MR827363
  19. [W] N.R. Wallach: Harmonic Analysis on Homogeneous Spaces. Dekker, New-York, 1977. Zbl0265.22022MR498996
  20. [Z] G. Zuckerman: Tensor products of finite and infinite dimensional representations of semisimple Lie groups. Ann. Math.106 (1977), p. 295-308. Zbl0384.22004MR457636

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.