A new geometric invariant associated to the space of flat connections

K. Guruprasad; Shrawan Kumar

Compositio Mathematica (1990)

  • Volume: 73, Issue: 2, page 199-222
  • ISSN: 0010-437X

How to cite

top

Guruprasad, K., and Kumar, Shrawan. "A new geometric invariant associated to the space of flat connections." Compositio Mathematica 73.2 (1990): 199-222. <http://eudml.org/doc/90003>.

@article{Guruprasad1990,
author = {Guruprasad, K., Kumar, Shrawan},
journal = {Compositio Mathematica},
keywords = {cohomology generators; principal G-bundle; flat connections; de Rham complex; functorial map; Chern-Simons secondary form; slant product; trivial connection},
language = {eng},
number = {2},
pages = {199-222},
publisher = {Kluwer Academic Publishers},
title = {A new geometric invariant associated to the space of flat connections},
url = {http://eudml.org/doc/90003},
volume = {73},
year = {1990},
}

TY - JOUR
AU - Guruprasad, K.
AU - Kumar, Shrawan
TI - A new geometric invariant associated to the space of flat connections
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 2
SP - 199
EP - 222
LA - eng
KW - cohomology generators; principal G-bundle; flat connections; de Rham complex; functorial map; Chern-Simons secondary form; slant product; trivial connection
UR - http://eudml.org/doc/90003
ER -

References

top
  1. [CS] S.S. Chern and J. Simons: Characteristic forms and geometric invariants. Annals of Math.99 (1974) 48-69. Zbl0283.53036MR353327
  2. [K] J.L. Koszul: "Fibre bundles and differential geometry". TIFR lecture notes, Springer-Verlag, (1986). Zbl0607.53001
  3. [Ku] S. Kumar: Non-representability of cohomology classes by bi-invariant forms (Gauge and Kac-Moody groups). Comm. Math. Phys.106 (1986) 177-181. Zbl0615.57025MR855307
  4. [M] J. Milnor: Remarks on infinite-dimensional Lie groups. In: Relativity, groups and topology II, DeWitt, B.S., Stora, R. (eds.). Les Houches (1983) 1009-1057. Zbl0594.22009MR830252
  5. [MS] J. Milnor and J.D. Stasheff: "Characteristic classes". Annals of Mathematics Studies No. 76, Princeton University Press (1974). Zbl0298.57008MR440554
  6. [S] E.H. Spanier: "Algebraic Topology". McGraw-Hill book company (1966). Zbl0145.43303MR210112
  7. [W] F.W. Warner: "Foundations of differentiable manifolds and Lie-groups". New York: Scott-Foresman (1971). Zbl0241.58001MR295244

NotesEmbed ?

top

You must be logged in to post comments.