Invariant analysis and contractions of symmetric spaces. Part I

François Rouvière

Compositio Mathematica (1990)

  • Volume: 73, Issue: 3, page 241-270
  • ISSN: 0010-437X

How to cite

top

Rouvière, François. "Invariant analysis and contractions of symmetric spaces. Part I." Compositio Mathematica 73.3 (1990): 241-270. <http://eudml.org/doc/90005>.

@article{Rouvière1990,
author = {Rouvière, François},
journal = {Compositio Mathematica},
keywords = {Campbell-Hausdorff expansion; invariant distribution; symmetric space; G- invariant linear differential operators},
language = {eng},
number = {3},
pages = {241-270},
publisher = {Kluwer Academic Publishers},
title = {Invariant analysis and contractions of symmetric spaces. Part I},
url = {http://eudml.org/doc/90005},
volume = {73},
year = {1990},
}

TY - JOUR
AU - Rouvière, François
TI - Invariant analysis and contractions of symmetric spaces. Part I
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 3
SP - 241
EP - 270
LA - eng
KW - Campbell-Hausdorff expansion; invariant distribution; symmetric space; G- invariant linear differential operators
UR - http://eudml.org/doc/90005
ER -

References

top
  1. 1 J.-L. Clerc, Une formule asymptotique du type Mehler-Heine pour les zonales d'un espace riemannien symétrique, Studia Math. 57 (1976) 27-32. Zbl0335.43010MR425521
  2. 2 A.H. Dooley, Contractions of Lie groups and applications to analysis, Topics in modern harmonic analysis, Roma1983. Zbl0551.22006MR748872
  3. 3 A.H. Dooley and J.W. Rice, On contractions of semi-simple Lie groups, Trans. Amer. Math. Soc.289 (1985) 185-202. Zbl0546.22017MR779059
  4. 4 M. Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Scient. Ec. Norm. Sup.10 (1977) 265-288. Zbl0353.22009MR444841
  5. 5 M. Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, Reg. Conf. Series in Maths. no. 61, Amer. Math. Soc.1986. Zbl0589.43008MR837420
  6. 6 V. Guillemin and S. Sternberg, Symplectic techniques in Physics, Cambridge University Press, Cambridge1984. Zbl0576.58012MR770935
  7. 7 P. Harinck, Fonctions généralisées sphériques sur GC/GR, Thèse, Université Paris7, 1988. 
  8. 8 Harish-Chandra, Invariant eigendistributions on a semi-simple Lie group, Trans. Amer. Math. Soc.119 (1965) 457-508. Zbl0199.46402MR180631
  9. 9 S. Helgason, Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Maths.86 (1964) 565-601. Zbl0178.17001MR165032
  10. 10 S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New-York1978. Zbl0451.53038MR514561
  11. 11 S. Helgason, Groups and geometric analysis, Academic Press, Orlando1984. Zbl0543.58001MR754767
  12. 12 M. Kashiwara and M. Vergne, The Campbell-Hausdorff formula and invariant hyperfunctions, Invent. Math.47 (1978) 249-272. Zbl0404.22012MR492078
  13. 13 S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol. II, Interscience Publishers, New-York1969. Zbl0175.48504MR238225
  14. 14 G. Lion, Résolubilité d'opérateurs différentiels invariants sur un nilespace homogène, prépublication, 1986. 
  15. 15 O. Loos, Symmetric spaces, vol. I, Benjamin, New-York1969. Zbl0175.48601
  16. 16 F. Rouviere, Espaces symétriques et méthode de Kashiwara-Vergne, Ann. Scient. Ec. Norm. Sup.19 (1986) 553-581. Zbl0612.43012MR875088
  17. 17 R.C. Thompson, Proof of a conjectured exponential formula, Linear and Multilinear Algebra19 (1986) 187-197. Zbl0596.15025MR846553
  18. 18 R.C. Thompson, Special cases of a matrix exponential formula, preprint, 1987. Zbl0655.15024MR960151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.