Concordance of compacta

Vo Thanh Liem; Gerard A. Venema

Compositio Mathematica (1990)

  • Volume: 75, Issue: 2, page 193-201
  • ISSN: 0010-437X

How to cite


Liem, Vo Thanh, and Venema, Gerard A.. "Concordance of compacta." Compositio Mathematica 75.2 (1990): 193-201. <>.

author = {Liem, Vo Thanh, Venema, Gerard A.},
journal = {Compositio Mathematica},
keywords = {shape concordant; shape equivalences; complement theorem; inessential loops condition},
language = {eng},
number = {2},
pages = {193-201},
publisher = {Kluwer Academic Publishers},
title = {Concordance of compacta},
url = {},
volume = {75},
year = {1990},

AU - Liem, Vo Thanh
AU - Venema, Gerard A.
TI - Concordance of compacta
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 193
EP - 201
LA - eng
KW - shape concordant; shape equivalences; complement theorem; inessential loops condition
UR -
ER -


  1. 1 T.A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math.76 (1972), 181-193. Zbl0262.55016MR320997
  2. 2 S.C. Ferry, A stable converse to the Vietoris-Smale theorem with applications to shape theory, Trans. Amer. Math. Soc.261 (1980), 369-386. Zbl0452.57002MR580894
  3. 3 J.F.P. Hudson, Concordance, isotopy and diffeotopy, Ann. of Math.91 (1970), 425-488. Zbl0202.54602MR259920
  4. 4 J.F.P. Hudson, Piecewise Linear Topology, W. A. Benjamin, Inc., New York and Amsterdam, 1969. Zbl0189.54507MR248844
  5. 5 L.S. Husch and I. Ivanšić, On shape concordances, in 'Shape Theory and Geometric Topology,' Lecture Notes in Mathematics, vol. 870, Springer-Verlag, New York, 1981, pp. 135-149. Zbl0473.57004MR643528
  6. 6 I Ivanšić and R.B. Sher, A complement theorem for continua in a manifold, Topology Proceedings4 (1979), 437-452. Zbl0458.57009MR598285
  7. 7 I Ivanšić, R.B. Sher, and G.A. Venema, Complement theorems beyond the trivial range, Ill. J. Math.25 (1981), 209-220. Zbl0454.57007MR607023
  8. 8 V.T. Liem and G.A. Venema, Stable shape concordance implies homeomorphic complements, Fund. Math.126 (1986), 123-131. Zbl0605.57008MR843241
  9. 9 V.T. Liem and G.A. Venema, Neighborhoods of S1-like continua in 4-manifolds, Mich. Math. J. (to appear). Zbl0831.57008MR1214053
  10. 10 S Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982. Zbl0495.55001MR676973
  11. 11 R.B. Sher, A complement theorem for shape concordant compacta, Proc. Amer. Math. Soc.91 (1984), 123-132. Zbl0553.57006MR735578
  12. 12 R.B. Sher, Complement theorems in shape theory, II, in 'Geometric Topology and Shape Theory,' Lecture Notes in Mathematics, vol. 1283, Springer-Verlag, New York, 1987, pp. 212-220. Zbl0631.55006MR922283
  13. 13 L.C. Siebenmann, Infinite simple homotopy types, Indag. Math.73 (1970), 479-495. Zbl0203.56002MR287542
  14. 14 E.H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York, 1966. Zbl0145.43303MR210112
  15. 15 G.A. Venema, Embeddings of compacta with shape dimension in the trivial range, Proc. Amer. Math. Soc.55 (1976), 443-448. Zbl0332.57005MR397738
  16. 16 G.A. Venema, Neighborhoods of compacta in Euclidean space, Fund. Math.109 (1980), 71-78. Zbl0372.57006MR594326
  17. 17 G.A. Venema, Neighborhoods of compacta in 4-manifolds, Topology and its Appl.31 (1989), 83-97. Zbl0669.57005MR984106

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.