Eine Klassenzahlformel für singuläre Moduln der Picardschen Modulgruppen

Jan Feustel

Compositio Mathematica (1990)

  • Volume: 76, Issue: 1-2, page 87-100
  • ISSN: 0010-437X

How to cite

top

Feustel, Jan. "Eine Klassenzahlformel für singuläre Moduln der Picardschen Modulgruppen." Compositio Mathematica 76.1-2 (1990): 87-100. <http://eudml.org/doc/90057>.

@article{Feustel1990,
author = {Feustel, Jan},
journal = {Compositio Mathematica},
keywords = {elliptic modular group; Picard modular group; imaginary quadratic field; K-singular moduli; Hilbert modular group; jacobian; class-numbers of CM-extension},
language = {ger},
number = {1-2},
pages = {87-100},
publisher = {Kluwer Academic Publishers},
title = {Eine Klassenzahlformel für singuläre Moduln der Picardschen Modulgruppen},
url = {http://eudml.org/doc/90057},
volume = {76},
year = {1990},
}

TY - JOUR
AU - Feustel, Jan
TI - Eine Klassenzahlformel für singuläre Moduln der Picardschen Modulgruppen
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 76
IS - 1-2
SP - 87
EP - 100
LA - ger
KW - elliptic modular group; Picard modular group; imaginary quadratic field; K-singular moduli; Hilbert modular group; jacobian; class-numbers of CM-extension
UR - http://eudml.org/doc/90057
ER -

References

top
  1. [0] Feustel, J.-M., Holzapfel, R.-P.: Symmetry points and Chern invariants of Picard modular surfaces, Math. Nachr.111 (1983), S.7-40. Zbl0528.14015MR725771
  2. [1] Feustel, J.-M.: Representation of Picard modular forms by theta constants, Rev. Roumaine Math. Pures Appl.33 (1988), S.275-281. Zbl0662.10020MR950127
  3. [1a] Feustel, J.-M.: Arithmetik und Geometrie Picardscher Modulflächen, Dissertation B, Akademie der Wissenschaften der DDR, Karl-Weierstrass-Institut für Mathematik (1987). 
  4. [2] Hasse, H.: Zahlentheorie,Akademie Verlag, Berlin (1963). Zbl1038.11500MR153659
  5. [2a] Hasse, H.: Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper, Teil I, B. G. Teubner, Leipzig/Berlin (1930). JFM56.0165.01
  6. [3] Hecke, E.: Zur Theorie der Modulfunktionen von 2 Variablen und ihre Anwendung auf die Zahlentheorie, Math. Annalen71, (1912), S.1-37. Zbl42.0457.01JFM42.0457.01
  7. [4] Holzapfel, R.-P.: Geometry and arithmetic around Euler partial differential equations, Kluwer Academic Publishers, Dordrecht, Holland, (1986). Zbl0595.14016MR849778
  8. [5] Holzapfel, R.-P.: An arithmetic uniformization for arithmetic points of the plane by singular moduli, J. Ramanujan Math. Soc.3(1), (1988), S.35-62. Zbl0692.10024MR975836
  9. [6] Lang, S.: Complex multiplication, New York, Berlin, Heidelberg, Tokyo, Springer (1983). Zbl0536.14029MR713612
  10. [7] Picard, E.: Sur des fonctions de deux variables independentes analogues aux fonctions modulaires, Acta Mathematica2 (1983), S.114-135. JFM15.0432.01
  11. [8] Picard, E.: Sur les formes quadratiques rerneires indefinies et sur les fonctions hyperfuchsiennes, Acta Mathematica5 (1884), S.121-182. JFM16.0385.01
  12. [9] Reiner, I.: A survey of integral representation theory, Bulletin of the American Mathematical Society, Vol. 76, No. 2, (1970), S.159-227. Zbl0194.04701MR254092
  13. [10] Shiga, H.: On the representation of Picard modular function by Θ constants I-II, Publ. RIMS, Kyoto Univ., 24 (1988), S. 311-360. Zbl0678.10020
  14. [11] Shiga, H.: On the construction of algebraic numbers as special values of the Picard modular function, Preprint, Chiba University. 
  15. [12] Shimura, G.: On analytic families of polarized Abelian varieties and automorphic functions, Annals of Mathematic, 78 (1963) No. 1, S. 149-192. Zbl0142.05402MR156001
  16. [13] Shimura, G.: Arithmetic of unitary groups, Annals of Mathematic, 79 (1964), S. 369-409. Zbl0144.29504MR158882
  17. [14] Scharlau, W.: Quadratic and hermitianforms, Springer, Berlin, Heidelberg, New York, Tokyo, (1985). Zbl0584.10010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.