Multiple Weierstrass points

J. H. Silverman; J. F. Voloch

Compositio Mathematica (1991)

  • Volume: 79, Issue: 1, page 123-134
  • ISSN: 0010-437X

How to cite

top

Silverman, J. H., and Voloch, J. F.. "Multiple Weierstrass points." Compositio Mathematica 79.1 (1991): 123-134. <http://eudml.org/doc/90096>.

@article{Silverman1991,
author = {Silverman, J. H., Voloch, J. F.},
journal = {Compositio Mathematica},
keywords = {Jacobian variety; abelian variety; Weierstrass points},
language = {eng},
number = {1},
pages = {123-134},
publisher = {Kluwer Academic Publishers},
title = {Multiple Weierstrass points},
url = {http://eudml.org/doc/90096},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Silverman, J. H.
AU - Voloch, J. F.
TI - Multiple Weierstrass points
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 1
SP - 123
EP - 134
LA - eng
KW - Jacobian variety; abelian variety; Weierstrass points
UR - http://eudml.org/doc/90096
ER -

References

top
  1. 1 Accola, R.: On generalized Weierstrass points on Riemann surfaces. Modular Functions in Analysis and Number Theory, ed. by T. A. Metzger, Lecture Notes in Math. and Stat., Univ. of Pittsburgh, Pittsburgh, PA: 1978. Zbl0532.14009MR732958
  2. 2 —: Topics in the Theory of Riemann Surfaces. Brown University: Lecture Notes September, 1989, to appear. 
  3. 3 Coleman, R.: Torsion points on curves, Galois Representations and Arithmetic Geometry. Adv. Stud. in Pure Math.12, 235-247 (1987). Zbl0653.14015MR948246
  4. 4 Duma, A.: Holomorphe Differentiale höherer Ordnung auf kompakten Riemannischen Flächen. Schrift. Univ. Münster14, 00-00 (1978). Zbl0394.30037MR515153
  5. 5 Faltings, G.: Diophantine approximation on Abelian varieties, Annals of Math., to appear. Zbl0734.14007MR1109353
  6. 6 Farkas, H.M., Kra, I.: Riemann surfaces, Grad. Texts Math. 71. New York: Springer-Verlag, 1980. Zbl0475.30001MR583745
  7. 7 Griffiths, P., Harris, J.: Principles of Algebraic Geometry. New York: John Wiley & Sons, 1978. Zbl0408.14001MR507725
  8. 8 Guerrero, I.: Automorphisms of compact Riemann surfaces and Weierstrass points. Riemann Surfaces and Related Topics, Proc. 1978 Stony Brook Conference. Princeton: Princeton Univ. Press, 1980. Zbl0462.30031MR624815
  9. 9 Horiuchi, R., Tanimoto, T.: Fixed points of automorphisms of compact Riemann surfaces and higher order Weierstrass points. Proc. Amer. Math. Soc.105, 856-860 (1989). Zbl0669.30035MR957265
  10. 10 Lewittes, J.: Automorphisms of compact Riemann surfaces. Amer. J. Math.85, 734-752 (1963). Zbl0146.10403MR160893
  11. 11 Mumford, D.: Abelian varieties. Bombay: Oxford University Press, 1970. Zbl0223.14022MR282985
  12. 12 Raynaud, M.: Courbes sur une variété abélienne et points de torsion. Invent. Math.71, 207-233 (1983). Zbl0564.14020MR688265
  13. 13 Stöhr, K.-O., Voloch, J.F.: Weierstrass points and curves over finite fields. Proc. London Math. Soc.52, 1-19 (1986). Zbl0593.14020MR812443
  14. 14 Takigawa, N.: Weierstrass points on compact Riemann surfaces with non-trivial automorphisms. J. Math. Soc. Japan33, 235-246 (1981). Zbl0462.30032MR607941

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.