Endomorphisms of jacobian varieties of Fermat curves
Compositio Mathematica (1991)
- Volume: 80, Issue: 1, page 85-110
- ISSN: 0010-437X
Access Full Article
topHow to cite
topLim, Chong-Hai. "Endomorphisms of jacobian varieties of Fermat curves." Compositio Mathematica 80.1 (1991): 85-110. <http://eudml.org/doc/90116>.
@article{Lim1991,
author = {Lim, Chong-Hai},
journal = {Compositio Mathematica},
keywords = {Jacobian of Fermat curve; endomorphism ring},
language = {eng},
number = {1},
pages = {85-110},
publisher = {Kluwer Academic Publishers},
title = {Endomorphisms of jacobian varieties of Fermat curves},
url = {http://eudml.org/doc/90116},
volume = {80},
year = {1991},
}
TY - JOUR
AU - Lim, Chong-Hai
TI - Endomorphisms of jacobian varieties of Fermat curves
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 1
SP - 85
EP - 110
LA - eng
KW - Jacobian of Fermat curve; endomorphism ring
UR - http://eudml.org/doc/90116
ER -
References
top- [1] G.W. Anderson, Torsion points on Fermat Jacobians, Roots of Circular Units and Relative Singular Homology, Duke Math. Journal54, No. 2 (1978), 501-561. MR899404
- [2] R. Coleman, Torsion Points on Abelian etale coverings of P1-{0,1, ∞}, Transactions of the AMS311, No. 1 (1989), 185-208. Zbl0692.14021
- [3] R. Coleman, Lecture notes on Cyclotomy, Tokyo University (1977).
- [4] G. Cornell and J.H. Silverman inArithmetic Geometry (eds), Springer-Verlag, New York-Berlin (1986). Zbl0596.00007MR861969
- [5] W. Curtis and I. Reiner, Methods of Representation Theory, Vol. 1, John Wiley, New York (1981). Zbl0469.20001
- [6] P. Deligne, J.S. Milne, A. Ogus, K.-Y. Shih, Hodge Cycles, Motives and Shimura Varieties, Lecture Notes in Mathematics 900, Springer-Verlag, Berlin-Heidelberg-New York (1982). Zbl0465.00010MR654325
- [7] M.J. Greenberg and J.H. Harper, Algebraic Topology, A First Course, Math. Lecture Note Series, The Benjamin/Cummings Publishing Co., Mass. (1981). Zbl0498.55001MR643101
- [8] R. Greenberg, On the Jacobian variety of some algebraic curves, Comp. Math.42 (1981), 345-359. Zbl0475.14026MR607375
- [9] B. Gross (with an appendix by D. Rohrlich), On the Periods of Abelian Integrals and a Formula of Chowla and Selberg, Invent. Math.45 (1978), 193-211. Zbl0418.14023MR480542
- [10] B. Gross and D. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Invent. Math.44 (1978), 201-224. Zbl0369.14011MR491708
- [11] N. Koblitz and D. Rohrlich, Simple factors in the Jacobian of a Fermat curve, Canadian J. Math.20 (1978), 1183-1205. Zbl0399.14023MR511556
- [12] S. Lang, Introduction to Algebraic and Abelian Functions, GTM 89 (2nd edn.), Springer-Verlag, New York -Berlin-Heidelberg. Zbl0513.14024MR681120
- [13] C.H. Lim, The Jacobian of a Cyclic Quotient of a Fermat Curve, Preprint (1990). Zbl0729.14022MR1156904
- [14] D. Mumford, Abelian Varieties, Oxford University Press, Oxford (1970). Zbl0223.14022MR282985
- [15] G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties and its Applications to Number Theory, Tokyo, Math. Soc. Japan (1961). Zbl0112.03502MR125113
- [16] T. Shioda, Some Observations on Jacobi Sums, Advanced Studies in Pure Mathematics 12, Galois Representations and Arithmetic Algebraic Geometry (1987), 119-135. Zbl0644.12002MR948239
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.