Decomposing oscillator representations of by a super dual pair
Compositio Mathematica (1991)
- Volume: 80, Issue: 2, page 137-149
- ISSN: 0010-437X
Access Full Article
topHow to cite
topNishiyama, Kyo. "Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^*$." Compositio Mathematica 80.2 (1991): 137-149. <http://eudml.org/doc/90118>.
@article{Nishiyama1991,
author = {Nishiyama, Kyo},
journal = {Compositio Mathematica},
keywords = {orthosymplectic superalgebras; oscillator representation; Lie superalgebra},
language = {eng},
number = {2},
pages = {137-149},
publisher = {Kluwer Academic Publishers},
title = {Decomposing oscillator representations of $\mathfrak \{osp\}(2n/n; \mathbb \{R\})$ by a super dual pair $\mathfrak \{osp\}(2/1; \mathbb \{R\}) \times \mathfrak \{so\}(n)^*$},
url = {http://eudml.org/doc/90118},
volume = {80},
year = {1991},
}
TY - JOUR
AU - Nishiyama, Kyo
TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^*$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 2
SP - 137
EP - 149
LA - eng
KW - orthosymplectic superalgebras; oscillator representation; Lie superalgebra
UR - http://eudml.org/doc/90118
ER -
References
top- [1] A. Bohm, M. Kmiecik, and L.J. Boya.Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. Zbl0654.17013MR941038
- [2] N. Bourbaki.Algèbre, Chap. 9. Hermann, 1959. Zbl0102.25503
- [3] C. Chevalley.Theory of Lie groups I. Princeton Univ. Press, 1946. Zbl0063.00842MR82628
- [4] L. Corwin, Y. Ne'eman, and S. Sternberg.Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. Zbl0557.17004MR438925
- [5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. MR859048
- [6] H. Furutsu and T. Hirai.Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. Zbl0674.17010MR981100
- [7] R. Howe.On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. Zbl0442.43002MR578375
- [8] R. Howe.Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. Zbl0674.15021MR986027
- [9] M. Kashiwara and M. Vergne.On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. Zbl0375.22009MR463359
- [10] K. Nishiyama.Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. Zbl0688.17002MR1037401
- [11] K. Nishiyama.Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. Zbl0802.17002
- [12] R. Parthasarathy.Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. Zbl0249.22003MR318398
- [13] J.H. Schwartz.Dual resonance theory. Phys. Rep., 8C:269-335, 1973.
- [14] S. Sternberg and J.A. Wolf.Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. Zbl0386.22010MR486325
- [15] H. Tilgner.Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. Zbl0386.17003MR457515
- [16] A. Weil.Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. Zbl0203.03305MR165033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.