Decomposing oscillator representations of 𝔬𝔰𝔭 ( 2 n / n ; ) by a super dual pair 𝔬𝔰𝔭 ( 2 / 1 ; ) × 𝔰𝔬 ( n ) *

Kyo Nishiyama

Compositio Mathematica (1991)

  • Volume: 80, Issue: 2, page 137-149
  • ISSN: 0010-437X

How to cite

top

Nishiyama, Kyo. "Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^*$." Compositio Mathematica 80.2 (1991): 137-149. <http://eudml.org/doc/90118>.

@article{Nishiyama1991,
author = {Nishiyama, Kyo},
journal = {Compositio Mathematica},
keywords = {orthosymplectic superalgebras; oscillator representation; Lie superalgebra},
language = {eng},
number = {2},
pages = {137-149},
publisher = {Kluwer Academic Publishers},
title = {Decomposing oscillator representations of $\mathfrak \{osp\}(2n/n; \mathbb \{R\})$ by a super dual pair $\mathfrak \{osp\}(2/1; \mathbb \{R\}) \times \mathfrak \{so\}(n)^*$},
url = {http://eudml.org/doc/90118},
volume = {80},
year = {1991},
}

TY - JOUR
AU - Nishiyama, Kyo
TI - Decomposing oscillator representations of $\mathfrak {osp}(2n/n; \mathbb {R})$ by a super dual pair $\mathfrak {osp}(2/1; \mathbb {R}) \times \mathfrak {so}(n)^*$
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 80
IS - 2
SP - 137
EP - 149
LA - eng
KW - orthosymplectic superalgebras; oscillator representation; Lie superalgebra
UR - http://eudml.org/doc/90118
ER -

References

top
  1. [1] A. Bohm, M. Kmiecik, and L.J. Boya.Representation theory of superconformal quantum mechanics. J. Math. Phys., 29:1163-1170, 1988. Zbl0654.17013MR941038
  2. [2] N. Bourbaki.Algèbre, Chap. 9. Hermann, 1959. Zbl0102.25503
  3. [3] C. Chevalley.Theory of Lie groups I. Princeton Univ. Press, 1946. Zbl0063.00842MR82628
  4. [4] L. Corwin, Y. Ne'eman, and S. Sternberg.Graded Lie algebras in mathematics and physics (bose-Fermi symmetry). Reviews of Modern Phys., 47:573-603, 1975. Zbl0557.17004MR438925
  5. [5] C. Fronsdal, editor. Essays on Supersymmetry. Reidel, 1986. MR859048
  6. [6] H. Furutsu and T. Hirai.Representations of Lie super algebras, I. Extensions of representations of the even part. J. Math. Kyoto Univ., 28:695-749, 1988. Zbl0674.17010MR981100
  7. [7] R. Howe.On the role of Heisenberg group in harmonic analysis. Bull. AMS, 3:821-843, 1980. Zbl0442.43002MR578375
  8. [8] R. Howe.Remarks on classical invariant theory. Trans. AMS, 313:539-570, 1989. Zbl0674.15021MR986027
  9. [9] M. Kashiwara and M. Vergne.On the Segal-Shale-Weil representations and harmonic polynomials. Inv. Math., 44:1-47, 1978. Zbl0375.22009MR463359
  10. [10] K. Nishiyama.Oscillator representations for orthosymplectic algebras. J. Alg., 129:231-262, 1990. Zbl0688.17002MR1037401
  11. [11] K. Nishiyama.Super dual pairs and unitary highest weight modules of orthosymplectic algebras. To appear in Adv. in Math. Zbl0802.17002
  12. [12] R. Parthasarathy.Dirac operator and the discrete series. Ann. Math., 96:1-30, 1972. Zbl0249.22003MR318398
  13. [13] J.H. Schwartz.Dual resonance theory. Phys. Rep., 8C:269-335, 1973. 
  14. [14] S. Sternberg and J.A. Wolf.Hermitian Lie algebras and metaplectic representations. I. Trans. AMS, 238:1-43, 1978. Zbl0386.22010MR486325
  15. [15] H. Tilgner.Graded generalizations of Weyl- and Clifford algebras. J. Pure and Appl. Alg., 10:163-168, 1977. Zbl0386.17003MR457515
  16. [16] A. Weil.Sur certain groupes d'operateurs unitairs. Acta Math., 111:143-211, 1964. Zbl0203.03305MR165033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.