Differential operators and rank 2 bundles over elliptic curves

Emma Previato; George Wilson

Compositio Mathematica (1992)

  • Volume: 81, Issue: 1, page 107-119
  • ISSN: 0010-437X

How to cite

top

Previato, Emma, and Wilson, George. "Differential operators and rank $2$ bundles over elliptic curves." Compositio Mathematica 81.1 (1992): 107-119. <http://eudml.org/doc/90129>.

@article{Previato1992,
author = {Previato, Emma, Wilson, George},
journal = {Compositio Mathematica},
keywords = {commuting pair of linear ordinary differential operators; vector bundle; classifications of the smooth elliptic curves; automorphism group; algebra of differential operators; indecomposable and decomposable bundles},
language = {eng},
number = {1},
pages = {107-119},
publisher = {Kluwer Academic Publishers},
title = {Differential operators and rank $2$ bundles over elliptic curves},
url = {http://eudml.org/doc/90129},
volume = {81},
year = {1992},
}

TY - JOUR
AU - Previato, Emma
AU - Wilson, George
TI - Differential operators and rank $2$ bundles over elliptic curves
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 1
SP - 107
EP - 119
LA - eng
KW - commuting pair of linear ordinary differential operators; vector bundle; classifications of the smooth elliptic curves; automorphism group; algebra of differential operators; indecomposable and decomposable bundles
UR - http://eudml.org/doc/90129
ER -

References

top
  1. [1] M.F. Atiyah: Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452. Zbl0084.17305MR131423
  2. [2] H.F. Baker: Note on the foregoing paper 'Commutative ordinary differential operators', by J.L. Burchnall and T.W. Chaundy, Proc. Royal Soc. London (A) 118 (1928), 584-593. JFM54.0439.02
  3. [3] J.L. Burchnall and T.W. Chaundy:(a) Commutative ordinary differential operators, Proc. London Math. Soc.21 (1923), 420-440;(b) Commutative ordinary differential operators, Proc. Royal Soc. London (A) 118 (1928), 557-583;(c) Commutative ordinary differential operators. II, Proc. Royal Soc. London (A) 134 (1932), 471-485. Zbl0003.25701JFM57.0478.01
  4. [4] P. Dehornoy: Opérateurs différentiels et courbes elliptiques, Comp. Math.43 (1981), 71-99. Zbl0475.14032MR631428
  5. [5] V.G. Drinfeld: On commutative subrings of certain non-commutative rings, Funct. Anal. Appl.11(1) (1977), 11-14 (Russian), 9-12 (English). Zbl0368.14011MR476732
  6. [6] P.G. Grinevich: Rational solutions for the equation of commutation of differential operators, Funct. Anal. Appl.16(1) (1982), 19-24 (Russian), 15-19 (English). Zbl0514.47034MR648805
  7. [7] F.A. Grünbaum: Commuting pairs of linear ordinary differential operators of orders four and six, Physica D31 (1988), 424-433. Zbl0654.47027MR954780
  8. [8] E.L. Ince: Ordinary Differential Equations, Longmans Green and Co., London (1926). JFM53.0399.07
  9. [9] I.M. Krichever: Integration of nonlinear equations by methods of algebraic geometry, Funct. Anal. Appl.11(1) (1977), 15-31 (Russian), 12-26 (English). Zbl0346.35028MR1275725
  10. [10] I.M. Krichever: Commutative rings of ordinary differential operators, Funct. Anal. Appl.12(3) (1978), 20-31 (Russian), 175-185 (English). Zbl0408.34008MR509381
  11. [11] I.M. Krichever and S.P. Novikov: Holomorphic bundles over Riemann surfaces and the Kadomtsev-Petviashvili (KP) equation, Funct. Anal. Appl.12(4) (1978), 41-52 (Russian), 276-286 (English). Zbl0404.35082MR515628
  12. [12] I.M. Krichever and S.P. Novikov: Holomorphic fiberings and nonlinear equations. Finite zone solutions of rank 2, Dokl. Akad. Nauk SSSR247 (1979), 33-37; Soviet Math. Doklady20 (1979), 650-654. Zbl0434.35078MR545939
  13. [13] G. Latham: PhD thesis, Berkeley (1989). 
  14. [14] D. Mumford: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg-de Vries equation and related nonlinear equations, Proc. Int. Symp. on Algebraic Geometry, M. Nagata (ed.), Kinokuniya Book Store, Tokyo (1978). Zbl0423.14007MR578857
  15. [15] E. Previato and G. Wilson: Vector bundles over curves and solutions of the KP equations, Proc. Symp. Pure Math.49 (1989) I, 553-569. Zbl0697.35128MR1013152
  16. [16] G.B. Segal and G. Wilson: Loop groups and equations of KdV type, 'Publ. Math. Inst. Hautes Études Sci.61 (1985), 5-65. Zbl0592.35112MR783348
  17. [17] J.-L. Verdier: Équations différentielles algébriques, Séminaire Bourbaki1977-78, Exposé 512 = Lecture Notes in Math.710, 101-122. Zbl0414.14012MR554217
  18. [18] G. Wilson: Algebraic curves and soliton equations, in Geometry Today, E. Arbarello, C. Procesi and E. Strickland (eds), Birkhaüser, Boston-Basel- Stuttgart (1985), pp. 303-329. Zbl0581.35065MR895160

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.