Limitations to the equi-distribution of primes III
John Friedlander; Andrew Granville
Compositio Mathematica (1992)
- Volume: 81, Issue: 1, page 19-32
- ISSN: 0010-437X
Access Full Article
topHow to cite
topFriedlander, John, and Granville, Andrew. "Limitations to the equi-distribution of primes III." Compositio Mathematica 81.1 (1992): 19-32. <http://eudml.org/doc/90130>.
@article{Friedlander1992,
author = {Friedlander, John, Granville, Andrew},
journal = {Compositio Mathematica},
keywords = {prime numbers; arithmetic progressions; Omega results; Maier's method},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Kluwer Academic Publishers},
title = {Limitations to the equi-distribution of primes III},
url = {http://eudml.org/doc/90130},
volume = {81},
year = {1992},
}
TY - JOUR
AU - Friedlander, John
AU - Granville, Andrew
TI - Limitations to the equi-distribution of primes III
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 1
SP - 19
EP - 32
LA - eng
KW - prime numbers; arithmetic progressions; Omega results; Maier's method
UR - http://eudml.org/doc/90130
ER -
References
top- [BFI] E. Bombieri, J.B. Friedlander, and H. Iwaniec: Primes in arithmetic progressions to large moduli, Acta Math.156 (1986), 203-251II, Math. Ann.277 (1987), 361-393; III, J. Amer. Math. Soc.2 (1989), 215-224. Zbl0674.10036MR834613
- [Bu] A.A. Buchstab: On an asymptotic estimate of the number of numbers of an arithmetic progression which are not divisible by relatively small prime numbers, Mat. Sb.28 (70) (1951), 165-184 (in Russian). MR45756
- [Da] H. Davenport: Multiplicative Number Theory (2nd ed.), Springer-Verlag, New York (1980). Zbl0453.10002MR606931
- [FG] J. Friedlander and A. Granville: Limitations to the equi-distribution of primes I, Ann. Math.129 (1989), 363-382. Zbl0671.10041MR986796
- [FGHM] J. Friedlander, A. Granville, A. Hildebrand, and H. Maier: Oscillation theorems for primes in arithmetic progressions and for sifting functions, to appear in J. Amer. Math. Soc. Zbl0724.11040MR1080647
- [Ga] P.X. Gallagher: A large sieve density estimate near σ = 1, Invent. Math.11 (1970), 329-339. Zbl0219.10048
- [HRi] H. Halberstam and H.-E. Richert: Sieve Methods, L.M.S. Monographs, Academic Press, London (1974). Zbl0298.10026MR424730
- [HRa] G.H. Hardy and S. Ramanujan: The normal number of prime factors of a number n, Quart. J. Math.48 (1917), 76-92. Zbl46.0262.03JFM46.0262.03
- [HM] A. Hildebrand and H. Maier: Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math.397 (1989), 162-193. Zbl0658.10048MR993220
- [Ma] H. Maier: Primes in short intervals, Michigan Math. J.32 (1985), 221-225. Zbl0569.10023MR783576
- [Mo] H.L. Montgomery: Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin (1971). Zbl0216.03501MR337847
- [Se] A. Selberg: On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid.47 (1943), 87-105. Zbl0063.06869MR12624
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.