Limitations to the equi-distribution of primes III

John Friedlander; Andrew Granville

Compositio Mathematica (1992)

  • Volume: 81, Issue: 1, page 19-32
  • ISSN: 0010-437X

How to cite

top

Friedlander, John, and Granville, Andrew. "Limitations to the equi-distribution of primes III." Compositio Mathematica 81.1 (1992): 19-32. <http://eudml.org/doc/90130>.

@article{Friedlander1992,
author = {Friedlander, John, Granville, Andrew},
journal = {Compositio Mathematica},
keywords = {prime numbers; arithmetic progressions; Omega results; Maier's method},
language = {eng},
number = {1},
pages = {19-32},
publisher = {Kluwer Academic Publishers},
title = {Limitations to the equi-distribution of primes III},
url = {http://eudml.org/doc/90130},
volume = {81},
year = {1992},
}

TY - JOUR
AU - Friedlander, John
AU - Granville, Andrew
TI - Limitations to the equi-distribution of primes III
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 1
SP - 19
EP - 32
LA - eng
KW - prime numbers; arithmetic progressions; Omega results; Maier's method
UR - http://eudml.org/doc/90130
ER -

References

top
  1. [BFI] E. Bombieri, J.B. Friedlander, and H. Iwaniec: Primes in arithmetic progressions to large moduli, Acta Math.156 (1986), 203-251II, Math. Ann.277 (1987), 361-393; III, J. Amer. Math. Soc.2 (1989), 215-224. Zbl0674.10036MR834613
  2. [Bu] A.A. Buchstab: On an asymptotic estimate of the number of numbers of an arithmetic progression which are not divisible by relatively small prime numbers, Mat. Sb.28 (70) (1951), 165-184 (in Russian). MR45756
  3. [Da] H. Davenport: Multiplicative Number Theory (2nd ed.), Springer-Verlag, New York (1980). Zbl0453.10002MR606931
  4. [FG] J. Friedlander and A. Granville: Limitations to the equi-distribution of primes I, Ann. Math.129 (1989), 363-382. Zbl0671.10041MR986796
  5. [FGHM] J. Friedlander, A. Granville, A. Hildebrand, and H. Maier: Oscillation theorems for primes in arithmetic progressions and for sifting functions, to appear in J. Amer. Math. Soc. Zbl0724.11040MR1080647
  6. [Ga] P.X. Gallagher: A large sieve density estimate near σ = 1, Invent. Math.11 (1970), 329-339. Zbl0219.10048
  7. [HRi] H. Halberstam and H.-E. Richert: Sieve Methods, L.M.S. Monographs, Academic Press, London (1974). Zbl0298.10026MR424730
  8. [HRa] G.H. Hardy and S. Ramanujan: The normal number of prime factors of a number n, Quart. J. Math.48 (1917), 76-92. Zbl46.0262.03JFM46.0262.03
  9. [HM] A. Hildebrand and H. Maier: Irregularities in the distribution of primes in short intervals, J. Reine Angew. Math.397 (1989), 162-193. Zbl0658.10048MR993220
  10. [Ma] H. Maier: Primes in short intervals, Michigan Math. J.32 (1985), 221-225. Zbl0569.10023MR783576
  11. [Mo] H.L. Montgomery: Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin (1971). Zbl0216.03501MR337847
  12. [Se] A. Selberg: On the normal density of primes in small intervals and the difference between consecutive primes, Arch. Math. Naturvid.47 (1943), 87-105. Zbl0063.06869MR12624

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.