# ${K}_{2}$ of elliptic curves with sufficient torsion over $Q$

Compositio Mathematica (1992)

- Volume: 81, Issue: 2, page 211-221
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topRoss, Raymond. "$K_2$ of elliptic curves with sufficient torsion over $Q$." Compositio Mathematica 81.2 (1992): 211-221. <http://eudml.org/doc/90136>.

@article{Ross1992,

author = {Ross, Raymond},

journal = {Compositio Mathematica},

keywords = {values of Hasse-Weil -functions of an elliptic curve; ; regulator},

language = {eng},

number = {2},

pages = {211-221},

publisher = {Kluwer Academic Publishers},

title = {$K_2$ of elliptic curves with sufficient torsion over $Q$},

url = {http://eudml.org/doc/90136},

volume = {81},

year = {1992},

}

TY - JOUR

AU - Ross, Raymond

TI - $K_2$ of elliptic curves with sufficient torsion over $Q$

JO - Compositio Mathematica

PY - 1992

PB - Kluwer Academic Publishers

VL - 81

IS - 2

SP - 211

EP - 221

LA - eng

KW - values of Hasse-Weil -functions of an elliptic curve; ; regulator

UR - http://eudml.org/doc/90136

ER -

## References

top- [1] A.A. Beilinson: Higher regulators and values of L-functions of curves, Functional Analysis and its Applications14 (1980), 116-118. Zbl0475.14015MR575206
- [2] S. Bloch: Lectures on Algebraic Cycles, Duke Mathematical Series, Duke University Press, 1980. Zbl0436.14003MR558224
- [3] S. Bloch and D. Grayson: K2 of Elliptic Curves and Values of L-Functions: Computer Calculations, in Contemporary Mathematics55, American Mathematical Society, 1983, 79-88. Zbl0629.14002
- [4] C. Deninger and K. Wingberg: On the Beilinson Conjectures for Elliptic Curves with Complex Multiplication, in Beilinson's Conjectures on Special Values of L-Functions, Academic Press, 1988. Zbl0721.14006MR944996
- [5] S. Lang: Elliptic Functions, Addison-Wesley, 1973. Zbl0316.14001MR409362
- [6] L. Olsen: Torsion points on elliptic curves with given j-invariant, Manuscripta Math. (1975), 145-150. Zbl0314.14006MR371898
- [7] D. Ramakrishnan: Regulators, Algebraic Cycles, and Values of L-Functions, in Contemporary Mathematics83, American Mathematical Society, 1989, 183-310. Zbl0694.14002MR991982
- [8] D. Rohrlich: Elliptic Curves and Values of L-Functions, in CMS Conf. Proc.7, 1987, 371-387. Zbl0632.14020MR894330
- [9] R. Ross: Minimal torsion in isogeny classes of elliptic curves, in preparation. Zbl0813.14021
- [10] J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, 1986. Zbl0585.14026MR817210

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.