Non-existence of singular cusp forms

Jian-Shu Li

Compositio Mathematica (1992)

  • Volume: 83, Issue: 1, page 43-51
  • ISSN: 0010-437X

How to cite

top

Li, Jian-Shu. "Non-existence of singular cusp forms." Compositio Mathematica 83.1 (1992): 43-51. <http://eudml.org/doc/90160>.

@article{Li1992,
author = {Li, Jian-Shu},
journal = {Compositio Mathematica},
keywords = {isometry group; cusp form; Fourier coefficient; singular automorphic forms},
language = {eng},
number = {1},
pages = {43-51},
publisher = {Kluwer Academic Publishers},
title = {Non-existence of singular cusp forms},
url = {http://eudml.org/doc/90160},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Li, Jian-Shu
TI - Non-existence of singular cusp forms
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 1
SP - 43
EP - 51
LA - eng
KW - isometry group; cusp form; Fourier coefficient; singular automorphic forms
UR - http://eudml.org/doc/90160
ER -

References

top
  1. [1] R. Howe, θ-series and invariant theory, Proc. Symp. Pure Math.33, AMS, Providence, 1979. Zbl0423.22016
  2. [2] R. Howe, L2-duality in the stable range (preprint). 
  3. [3] R. Howe, A notion of rank for unitary representations of classical groups, C.I.M.E. Summer School on Harmonic analysis, Cortona, 1980. 
  4. [4] R. Howe, Automorphic forms of low rank, in: Non-Commutative Harmonic Analysis, Lecture Notes in Math.880, pp. 211-248, Springer-Verlag, 1980. Zbl0463.10015MR644835
  5. [5] H. Jacquet and J. Shalika, Euler products and the classification of automorphic representations, I, Amer. J. Math.103 (1981), 499-557. Zbl0473.12008MR618323
  6. [6] M. Kneser, Strong approximation, Proc. Symp. Pure Math. Vol. IX, 187-196. Zbl0201.37904MR213361
  7. [7] J.S. Li, Singular unitary representations of classical groups, Invent. Math.97, 237-255 (1989). Zbl0694.22011MR1001840
  8. [8] J.S. Li, On the classification of irreducible low rank unitary representations of classical groups, Comp. Math.71, 29-48 (1989). Zbl0694.22012MR1008803
  9. [9] J.S. Li, Distinguished cusp forms are theta series, Duke Math. J.59, No. 1 (1989), 175-189. Zbl0689.10041MR1016883
  10. [10] Maass, H., Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 26, Springer, 1971. Zbl0224.10028MR344198
  11. [11] Rallis, S. and Piatetski-Shapiro, I.I., A new way to get an Euler product, J. Reine Angew. Math.392 (1988), 110-124. Zbl0651.10021MR965059
  12. [12] Piatetski-Shapiro, I., Oral communication. 
  13. [13] I. Satake, Some remarks to the preceding paper of Tsukomoto, J. Math. Soc. Japan13, No. 4, 1961, 401-409. Zbl0201.37102MR136663
  14. [14] R. Scaramuzzi, A notion of rank for unitary representations of general linear groups, Thesis, Yale University, 1985. Zbl0704.22012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.