# Non-existence of singular cusp forms

Compositio Mathematica (1992)

- Volume: 83, Issue: 1, page 43-51
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topLi, Jian-Shu. "Non-existence of singular cusp forms." Compositio Mathematica 83.1 (1992): 43-51. <http://eudml.org/doc/90160>.

@article{Li1992,

author = {Li, Jian-Shu},

journal = {Compositio Mathematica},

keywords = {isometry group; cusp form; Fourier coefficient; singular automorphic forms},

language = {eng},

number = {1},

pages = {43-51},

publisher = {Kluwer Academic Publishers},

title = {Non-existence of singular cusp forms},

url = {http://eudml.org/doc/90160},

volume = {83},

year = {1992},

}

TY - JOUR

AU - Li, Jian-Shu

TI - Non-existence of singular cusp forms

JO - Compositio Mathematica

PY - 1992

PB - Kluwer Academic Publishers

VL - 83

IS - 1

SP - 43

EP - 51

LA - eng

KW - isometry group; cusp form; Fourier coefficient; singular automorphic forms

UR - http://eudml.org/doc/90160

ER -

## References

top- [1] R. Howe, θ-series and invariant theory, Proc. Symp. Pure Math.33, AMS, Providence, 1979. Zbl0423.22016
- [2] R. Howe, L2-duality in the stable range (preprint).
- [3] R. Howe, A notion of rank for unitary representations of classical groups, C.I.M.E. Summer School on Harmonic analysis, Cortona, 1980.
- [4] R. Howe, Automorphic forms of low rank, in: Non-Commutative Harmonic Analysis, Lecture Notes in Math.880, pp. 211-248, Springer-Verlag, 1980. Zbl0463.10015MR644835
- [5] H. Jacquet and J. Shalika, Euler products and the classification of automorphic representations, I, Amer. J. Math.103 (1981), 499-557. Zbl0473.12008MR618323
- [6] M. Kneser, Strong approximation, Proc. Symp. Pure Math. Vol. IX, 187-196. Zbl0201.37904MR213361
- [7] J.S. Li, Singular unitary representations of classical groups, Invent. Math.97, 237-255 (1989). Zbl0694.22011MR1001840
- [8] J.S. Li, On the classification of irreducible low rank unitary representations of classical groups, Comp. Math.71, 29-48 (1989). Zbl0694.22012MR1008803
- [9] J.S. Li, Distinguished cusp forms are theta series, Duke Math. J.59, No. 1 (1989), 175-189. Zbl0689.10041MR1016883
- [10] Maass, H., Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 26, Springer, 1971. Zbl0224.10028MR344198
- [11] Rallis, S. and Piatetski-Shapiro, I.I., A new way to get an Euler product, J. Reine Angew. Math.392 (1988), 110-124. Zbl0651.10021MR965059
- [12] Piatetski-Shapiro, I., Oral communication.
- [13] I. Satake, Some remarks to the preceding paper of Tsukomoto, J. Math. Soc. Japan13, No. 4, 1961, 401-409. Zbl0201.37102MR136663
- [14] R. Scaramuzzi, A notion of rank for unitary representations of general linear groups, Thesis, Yale University, 1985. Zbl0704.22012

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.