Smith theory and quasi-periodicity in Bredon cohomology

Jolanta Słlomińska

Compositio Mathematica (1992)

  • Volume: 83, Issue: 2, page 161-186
  • ISSN: 0010-437X

How to cite

top

Słlomińska, Jolanta. "Smith theory and quasi-periodicity in Bredon cohomology." Compositio Mathematica 83.2 (1992): 161-186. <http://eudml.org/doc/90165>.

@article{Słlomińska1992,
author = {Słlomińska, Jolanta},
journal = {Compositio Mathematica},
keywords = {quasi-periodicity; --complex; Bredon cohomology; Smith theory},
language = {eng},
number = {2},
pages = {161-186},
publisher = {Kluwer Academic Publishers},
title = {Smith theory and quasi-periodicity in Bredon cohomology},
url = {http://eudml.org/doc/90165},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Słlomińska, Jolanta
TI - Smith theory and quasi-periodicity in Bredon cohomology
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 2
SP - 161
EP - 186
LA - eng
KW - quasi-periodicity; --complex; Bredon cohomology; Smith theory
UR - http://eudml.org/doc/90165
ER -

References

top
  1. [1] G.E. Bredon: Equivariant cohomology theory. Lecture Notes in Math.34, Berlin- Heidelberg-New York: Springer1967. Zbl0162.27202MR214062
  2. [2] G.E. Bredon: Introduction to compact transformation groups. New York -London: Academic Press, 1972. Zbl0246.57017MR413144
  3. [3] K.S. Brown: Cohomology of groups. New York- Heidelberg-Berlin: Springer1982. Zbl0584.20036MR672956
  4. [4] H. Cartan and S. Eilenberg: Homological Algebra. Princeton, N.J.: Princeton University Press, 1956. Zbl0075.24305MR77480
  5. [5] L. Choinard: Projectivity and relative projectivity over group rings, J. Pure and Applied Algebra7 (1976), 287-302. Zbl0327.20020MR401943
  6. [6] P.J. Hilton: and U. Stammbach: A course in homological algebra. New York- Heidelberg-Berlin: Springer, 1970. Zbl0238.18006MR1438546
  7. [7] S. Jackowski: The Euler class and periodicity of groups cohomology, Comment. Math. Helvetici53 (1978), 643-650. Zbl0404.20043MR511854
  8. [8] K. Jänich: Differenzierbare G-Mannigfaltgkeiten. Lecture Notes in Math.59, Berlin- Heidelberg-New York: Springer1968. Zbl0159.53701MR229261
  9. [9] J.P. May: A generalization of Smith theory, Proc. of A.M.S.101 (1987), 728-730. Zbl0635.57020MR911041
  10. [10] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Mathematicace134, PWN1976. Zbl0343.57021MR407841
  11. [11] J.P. Serre: Sur la dimension cohomologique des groupes profinis, Topology3 (1965), 413-420. Zbl0136.27402MR180619
  12. [12] J. Słomińska: Equivariant Bredon cohomology of classifying spaces of families of subgroups, Bull Ac. Pol. Math.28 (1980), 503-508. Zbl0479.55006
  13. [13] J. Słomińska: Hecke structure on Bredon cohomology, to appear in Fundamenta Mathematicae. Zbl0812.55004
  14. [14] J. Słomińska: Finiteness conditions in Bredon cohomology, to appear in J. Pure and Applied Algebra. Zbl0748.55003
  15. [15] J S⋖omińska: Dimension in Bredon cohomology. In preparation. 

NotesEmbed ?

top

You must be logged in to post comments.