Smith theory and quasi-periodicity in Bredon cohomology

Jolanta Słlomińska

Compositio Mathematica (1992)

  • Volume: 83, Issue: 2, page 161-186
  • ISSN: 0010-437X

How to cite

top

Słlomińska, Jolanta. "Smith theory and quasi-periodicity in Bredon cohomology." Compositio Mathematica 83.2 (1992): 161-186. <http://eudml.org/doc/90165>.

@article{Słlomińska1992,
author = {Słlomińska, Jolanta},
journal = {Compositio Mathematica},
keywords = {quasi-periodicity; --complex; Bredon cohomology; Smith theory},
language = {eng},
number = {2},
pages = {161-186},
publisher = {Kluwer Academic Publishers},
title = {Smith theory and quasi-periodicity in Bredon cohomology},
url = {http://eudml.org/doc/90165},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Słlomińska, Jolanta
TI - Smith theory and quasi-periodicity in Bredon cohomology
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 2
SP - 161
EP - 186
LA - eng
KW - quasi-periodicity; --complex; Bredon cohomology; Smith theory
UR - http://eudml.org/doc/90165
ER -

References

top
  1. [1] G.E. Bredon: Equivariant cohomology theory. Lecture Notes in Math.34, Berlin- Heidelberg-New York: Springer1967. Zbl0162.27202MR214062
  2. [2] G.E. Bredon: Introduction to compact transformation groups. New York -London: Academic Press, 1972. Zbl0246.57017MR413144
  3. [3] K.S. Brown: Cohomology of groups. New York- Heidelberg-Berlin: Springer1982. Zbl0584.20036MR672956
  4. [4] H. Cartan and S. Eilenberg: Homological Algebra. Princeton, N.J.: Princeton University Press, 1956. Zbl0075.24305MR77480
  5. [5] L. Choinard: Projectivity and relative projectivity over group rings, J. Pure and Applied Algebra7 (1976), 287-302. Zbl0327.20020MR401943
  6. [6] P.J. Hilton: and U. Stammbach: A course in homological algebra. New York- Heidelberg-Berlin: Springer, 1970. Zbl0238.18006MR1438546
  7. [7] S. Jackowski: The Euler class and periodicity of groups cohomology, Comment. Math. Helvetici53 (1978), 643-650. Zbl0404.20043MR511854
  8. [8] K. Jänich: Differenzierbare G-Mannigfaltgkeiten. Lecture Notes in Math.59, Berlin- Heidelberg-New York: Springer1968. Zbl0159.53701MR229261
  9. [9] J.P. May: A generalization of Smith theory, Proc. of A.M.S.101 (1987), 728-730. Zbl0635.57020MR911041
  10. [10] R.L. Rubinsztein: On the equivariant homotopy of spheres, Dissertationes Mathematicace134, PWN1976. Zbl0343.57021MR407841
  11. [11] J.P. Serre: Sur la dimension cohomologique des groupes profinis, Topology3 (1965), 413-420. Zbl0136.27402MR180619
  12. [12] J. Słomińska: Equivariant Bredon cohomology of classifying spaces of families of subgroups, Bull Ac. Pol. Math.28 (1980), 503-508. Zbl0479.55006
  13. [13] J. Słomińska: Hecke structure on Bredon cohomology, to appear in Fundamenta Mathematicae. Zbl0812.55004
  14. [14] J. Słomińska: Finiteness conditions in Bredon cohomology, to appear in J. Pure and Applied Algebra. Zbl0748.55003
  15. [15] J S⋖omińska: Dimension in Bredon cohomology. In preparation. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.