A fine limit property of functions superharmonic outside a manifold

Stephen J. Gardiner

Compositio Mathematica (1992)

  • Volume: 83, Issue: 2, page 239-249
  • ISSN: 0010-437X

How to cite

top

Gardiner, Stephen J.. "A fine limit property of functions superharmonic outside a manifold." Compositio Mathematica 83.2 (1992): 239-249. <http://eudml.org/doc/90167>.

@article{Gardiner1992,
author = {Gardiner, Stephen J.},
journal = {Compositio Mathematica},
keywords = {thin sets; spine-like sets; Newtonian capacity; Dirichlet problem},
language = {eng},
number = {2},
pages = {239-249},
publisher = {Kluwer Academic Publishers},
title = {A fine limit property of functions superharmonic outside a manifold},
url = {http://eudml.org/doc/90167},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Gardiner, Stephen J.
TI - A fine limit property of functions superharmonic outside a manifold
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 2
SP - 239
EP - 249
LA - eng
KW - thin sets; spine-like sets; Newtonian capacity; Dirichlet problem
UR - http://eudml.org/doc/90167
ER -

References

top
  1. 1 D.H. Armitage: Zero sets that force the growth of a subharmonic function. Proc. R. Ir. Acad.86A (1986) 5-17. Zbl0597.31003MR865097
  2. 2 K. Burdzy: Brownian excursions and minimal thinness. I., Ann. Prob.15 (1987) 676-689. Zbl0656.60051MR885137
  3. 3 G.A. Cámera: On a condition of thinness at infinity, Comp. Math.70 (1989) 1-11. Zbl0691.31002MR993170
  4. 4 J. Deny: Un théorème sur les ensembles effilés, Annls. Univ. Grenoble, Sect. Sci. Math. Phys.23 (1948) 139-142. Zbl0030.05602MR24531
  5. 5 J.L. Doob: Classical potential theory and its probabilistic counterpart, Springer, New York1984. Zbl0549.31001MR731258
  6. 6 W.K. Hayman: Subharmonic functions, Volume 2, Academic Press, London1989. Zbl0699.31001MR1049148
  7. 7 L.L. Helms: Introduction to potential theory, Krieger, New York1975. MR460666
  8. 8 S.C. Port and C.J. Stone: Brownian motion and classical potential theory, Academic Press, New York1978. Zbl0413.60067MR492329
  9. 9 P.J. Rippon: A boundary estimate for harmonic functions, Math. Proc. Cambridge Philos. Soc.91 (1982) 79-90. Zbl0498.31001MR633258
  10. 10 P.J. Rippon: The fine boundary behaviour of certain delta-subharmonic functions, J. London Math. Soc. (2)26 (1982) 487-503. Zbl0519.31006MR684562

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.