A fine limit property of functions superharmonic outside a manifold
Compositio Mathematica (1992)
- Volume: 83, Issue: 2, page 239-249
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGardiner, Stephen J.. "A fine limit property of functions superharmonic outside a manifold." Compositio Mathematica 83.2 (1992): 239-249. <http://eudml.org/doc/90167>.
@article{Gardiner1992,
author = {Gardiner, Stephen J.},
journal = {Compositio Mathematica},
keywords = {thin sets; spine-like sets; Newtonian capacity; Dirichlet problem},
language = {eng},
number = {2},
pages = {239-249},
publisher = {Kluwer Academic Publishers},
title = {A fine limit property of functions superharmonic outside a manifold},
url = {http://eudml.org/doc/90167},
volume = {83},
year = {1992},
}
TY - JOUR
AU - Gardiner, Stephen J.
TI - A fine limit property of functions superharmonic outside a manifold
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 2
SP - 239
EP - 249
LA - eng
KW - thin sets; spine-like sets; Newtonian capacity; Dirichlet problem
UR - http://eudml.org/doc/90167
ER -
References
top- 1 D.H. Armitage: Zero sets that force the growth of a subharmonic function. Proc. R. Ir. Acad.86A (1986) 5-17. Zbl0597.31003MR865097
- 2 K. Burdzy: Brownian excursions and minimal thinness. I., Ann. Prob.15 (1987) 676-689. Zbl0656.60051MR885137
- 3 G.A. Cámera: On a condition of thinness at infinity, Comp. Math.70 (1989) 1-11. Zbl0691.31002MR993170
- 4 J. Deny: Un théorème sur les ensembles effilés, Annls. Univ. Grenoble, Sect. Sci. Math. Phys.23 (1948) 139-142. Zbl0030.05602MR24531
- 5 J.L. Doob: Classical potential theory and its probabilistic counterpart, Springer, New York1984. Zbl0549.31001MR731258
- 6 W.K. Hayman: Subharmonic functions, Volume 2, Academic Press, London1989. Zbl0699.31001MR1049148
- 7 L.L. Helms: Introduction to potential theory, Krieger, New York1975. MR460666
- 8 S.C. Port and C.J. Stone: Brownian motion and classical potential theory, Academic Press, New York1978. Zbl0413.60067MR492329
- 9 P.J. Rippon: A boundary estimate for harmonic functions, Math. Proc. Cambridge Philos. Soc.91 (1982) 79-90. Zbl0498.31001MR633258
- 10 P.J. Rippon: The fine boundary behaviour of certain delta-subharmonic functions, J. London Math. Soc. (2)26 (1982) 487-503. Zbl0519.31006MR684562
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.