Values of isotropic quadratic forms at S -integral points

Armand Borel; Gopal Prasad

Compositio Mathematica (1992)

  • Volume: 83, Issue: 3, page 347-372
  • ISSN: 0010-437X

How to cite

top

Borel, Armand, and Prasad, Gopal. "Values of isotropic quadratic forms at $S$-integral points." Compositio Mathematica 83.3 (1992): 347-372. <http://eudml.org/doc/90173>.

@article{Borel1992,
author = {Borel, Armand, Prasad, Gopal},
journal = {Compositio Mathematica},
keywords = {minima of forms; density of values; orbit closures; generalization of Margulis' theorem; indefinite quadratic form; small values at integral points},
language = {eng},
number = {3},
pages = {347-372},
publisher = {Kluwer Academic Publishers},
title = {Values of isotropic quadratic forms at $S$-integral points},
url = {http://eudml.org/doc/90173},
volume = {83},
year = {1992},
}

TY - JOUR
AU - Borel, Armand
AU - Prasad, Gopal
TI - Values of isotropic quadratic forms at $S$-integral points
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 83
IS - 3
SP - 347
EP - 372
LA - eng
KW - minima of forms; density of values; orbit closures; generalization of Margulis' theorem; indefinite quadratic form; small values at integral points
UR - http://eudml.org/doc/90173
ER -

References

top
  1. [A] A. Ash: Non-square-integrable cohomology of arithmetic groups, Duke Math. J.47 (1980), 435-449. Zbl0446.20023MR575906
  2. [B] A. Borel: Linear Algebraic Groups, Benjamin, New York1969; 2nd edn., GTM126, Springer-Verlag1991. Zbl0186.33201MR1102012
  3. [BP] A. Borel et G. Prasad: Valeurs de formes quadratiques aux points entiers, C. R. Acad. Sci. Paris307 (1988), 217-220. Zbl0654.10022MR956809
  4. [D] S.G. Dani, A simple proof of Borel's density theorem, Math. Zeitschr.174 (1980), 81-94. Zbl0432.22008MR591617
  5. [DM] S.G. Dani and G.A. Margulis: Values of quadratic forms at primitive integral points, Inv. Math.98 (1989), 405-425. Zbl0682.22008MR1016271
  6. [M] G.A. Margulis: Discrete groups and ergodic theory, in Number Theory, Trace Formulas and Discrete Groups, Symposium in honor of A. Selberg, Oslo1987, Academic Press (1989), 377-398. Zbl0675.10010MR993328
  7. [P] V.P. Platonov: The problem of strong approximation and the Kneser-Tits conjecture, Math. USSR Izv.3 (1969), 1139-1147;Addendum, ibid.4(1970), 784-786. Zbl0236.20034
  8. [RR] S. Raghavan and K.G. Ramanathan: On a diophantine inequality concerning quadratic forms, Göttingen Nachr. Mat. Phys. Klasse (1968), 251-262. Zbl0214.06602MR263743
  9. [Rt] M. Ratner: Raghunathan's topological conjecture and distribution of unipotent flowsDuke Math. J.63 (1991), 235-280. Zbl0733.22007MR1106945
  10. [W] A. Weil, Adeles and algebraic groups, Progress in Mathematics23, Birkhäuser, Boston, 1982. Zbl0493.14028MR670072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.