Lawson homology for quasiprojective varieties

Paulo Lima-Filho

Compositio Mathematica (1992)

  • Volume: 84, Issue: 1, page 1-23
  • ISSN: 0010-437X

How to cite

top

Lima-Filho, Paulo. "Lawson homology for quasiprojective varieties." Compositio Mathematica 84.1 (1992): 1-23. <http://eudml.org/doc/90175>.

@article{Lima1992,
author = {Lima-Filho, Paulo},
journal = {Compositio Mathematica},
keywords = {Lawson homology; étale homotopy; algebraic cycles; quasi-projective varieties},
language = {eng},
number = {1},
pages = {1-23},
publisher = {Kluwer Academic Publishers},
title = {Lawson homology for quasiprojective varieties},
url = {http://eudml.org/doc/90175},
volume = {84},
year = {1992},
}

TY - JOUR
AU - Lima-Filho, Paulo
TI - Lawson homology for quasiprojective varieties
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 84
IS - 1
SP - 1
EP - 23
LA - eng
KW - Lawson homology; étale homotopy; algebraic cycles; quasi-projective varieties
UR - http://eudml.org/doc/90175
ER -

References

top
  1. [1] Almgren, Jr., F.J.: Homotopy groups of the integral cyclic groups. Topology1 (1962), 257-299. Zbl0118.18503MR146835
  2. [2] Artin, M. and Mazur, B.: Etale homotopy. Lecture Notes in Mathematics100, Springer-Verlag, New York (1969). Zbl0182.26001MR245577
  3. [3] Bloch, S.: Algebraic cycles and higher K-theory. Adv. in Math.61 (1986), 267-304. Zbl0608.14004MR852815
  4. [4] Borel, A. and Moore, J.: Homology theory for locally compact spaces. Mich. Math. J.7 (1960), 137-159. Zbl0116.40301MR131271
  5. [5] Boyer, C.P., Lawson, B., Lima-Fillio, P.C. Mann, B., and Michelsohn, M.-L.: Algebraic Cycles and Infinite Loop Spaces. Preprint. Zbl0797.55006
  6. [6] Dold, A. and Thom, R.: Quasifaserungen und unendliche symmetrische produkte. Ann. of Math.67 (1956), 230-281. Zbl0091.37102MR97062
  7. [7] Federe, H.: Geometric Measure Theory. Springer-Verlag, New York (1969). Zbl0176.00801MR257325
  8. [8] Friedlander, E.: Homology using Chow varieties. Bull. AMS20 (1989), 49-53. Zbl0696.14010MR945300
  9. [9] Friedlander, E.: Algebraic cycles, Chow varieties and Lawson homology. To appear in Contemp. Math. Zbl0754.14011MR1091892
  10. [10] Friedlander, E. and Lawson, Jr., H. Blaine: A Theory of Algebraic Cocycles. Preprint. Zbl0788.14014
  11. [11] Friedlander, E. and Mazur, B.: Filtrations on the Homology of Algebraic Varieties. Preprint. Zbl0841.14019
  12. [12] Fulton, W. and MacPherson, R.: Categorical framework for the study of singular spaces. Mem. Amer. Math. Soc.243 (1981). Zbl0467.55005MR609831
  13. [13] Fulton, W.: Intersection Theory. Springer-Verlag, New York (1984). Zbl0541.14005MR732620
  14. [14] Griffiths, P. and Harris, J.: Principles of Algebraic Geometry. John Wiley, New York (1978). Zbl0408.14001MR507725
  15. [15] Grothendieck, A.: Hodge's general conjecture is false for trivial reasons. Topology8 (1969), 299-303. Zbl0177.49002MR252404
  16. [16] Hartshorne, R.: Algebraic Geometry. Springer-Verlag, New York (1977). Zbl0367.14001MR463157
  17. [17] Hironaka, H.: Triangulation of algebraic sets. Proceedings of Symp. in Pure Math.29 (1975), 165-185. Zbl0332.14001MR374131
  18. [18] Hoyt, W.: On the Chow bunches of different projective embeddings of a projective variety. Amer. J. Math.88 (1966), 273-278. Zbl0142.18501MR200271
  19. [19] Lawson, Jr., H. Blaine: Minimal Varieties in Real and Complex Geometry. University of Montreal Press, Montreal (1973). Zbl0328.53001
  20. [20] Lawson, Jr., H. Blaine: The topological structure of the space of algebraic varieties. Bull. A.M.S. 17 (1987) 326-330. Zbl0686.14045MR903744
  21. [21] Lawson,Jr., H. Blaine: Algebraic cycles and homotopy theory. Ann. of Math.129 (1989), 253-291. Zbl0688.14006MR986794
  22. [22] Lawson, Jr., H. Blaine and Michelsohn, M.L.: Algebraic cycles, Bott periodicity, and the Chern characteristic map. Proc. Symp. Pure Math.48, A.M.S., Providence (1988). Zbl0665.14001MR974339
  23. [23] Lima-Filho, Paulo C.: Homotopy Groups of Cycle Spaces. Thesis. Stony Brook (1989). 
  24. [24] Lima-Filho, Paulo C.: Group Completions and Fibrations for Filtered Monoids and Excision for Lawson Homology. Preprint, Chicago /IAS (1990). 
  25. [25] Lima-Filho, Paulo C.On the Cycle Map for L-Homology. In preparation, Chicago (1990). Zbl0802.14009
  26. [26] McDuff, D. and Segal, G.: Homology fibrations and the group completion theorem. Invent. Math.31 (1976), 279-284. Zbl0306.55020MR402733
  27. [27] Narasimhan, R.: Introduction to the Theory of Analytic Spaces. Springer-Verlag, New York (1966). Zbl0168.06003MR217337
  28. [28] Samuel, P.: Methodes d'Algebre Abstrait en Geometrie Algebrique. Springer-Verlag, Heidelberg (1955). Zbl0067.38904MR72531
  29. [29] Quillen, D.: The Group Completion of a Topological Monoid. Unpublished. Zbl0192.35803
  30. [30] Shafarevich, I.: Basic Algebraic Geometry. Springer-Verlag, New York (1974). Zbl0362.14001MR366917
  31. [31] Steenrod, Norman: The Topology of Fiber Bundles. Princeton University Press (1951). Zbl0054.07103MR39258
  32. [32] Steenrod, Norman: A convenient category of topological spaces. Michigan Math. J.14 (1967), 133-152. Zbl0145.43002MR210075
  33. [33] Whitehead, George, W.: Elements of Homotopy Theory. Springer-Verlag, New York (1978). Zbl0406.55001MR516508

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.