The universal periods of curves and the Schottky problem
Compositio Mathematica (1993)
- Volume: 85, Issue: 1, page 1-8
- ISSN: 0010-437X
Access Full Article
topHow to cite
topIchikawa, Takashi. "The universal periods of curves and the Schottky problem." Compositio Mathematica 85.1 (1993): 1-8. <http://eudml.org/doc/90189>.
@article{Ichikawa1993,
author = {Ichikawa, Takashi},
journal = {Compositio Mathematica},
keywords = {Schottky problem; Siegel modular forms; Jacobian locus; periods of algebraic curves},
language = {eng},
number = {1},
pages = {1-8},
publisher = {Kluwer Academic Publishers},
title = {The universal periods of curves and the Schottky problem},
url = {http://eudml.org/doc/90189},
volume = {85},
year = {1993},
}
TY - JOUR
AU - Ichikawa, Takashi
TI - The universal periods of curves and the Schottky problem
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 1
SP - 1
EP - 8
LA - eng
KW - Schottky problem; Siegel modular forms; Jacobian locus; periods of algebraic curves
UR - http://eudml.org/doc/90189
ER -
References
top- [1] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus, Publ. Math. IHES.36 (1969), 75-109. Zbl0181.48803MR262240
- [2] G. Faltings: Arithmetische Kompaktifizierung des Modulraums der abelschen Varietäten, Proc. Arbeitstagung Bonn 1984, Lecture Notes in Math. 1111 (1985), 321-383, Springer-Verlag. Zbl0597.14036MR797429
- [3] J.D. Fay: Theta functions on Riemann surfaces, Lecture Notes in Math.352 (1973), Springer-Verlag. Zbl0281.30013MR335789
- [4] L. Gerritzen: Zur analytischen Beschreibung des Raumes der Schottky-Mumford-Kurven, Math. Ann.255 (1981), 259-271. Zbl0442.14007MR614401
- [5] Y. Ihara: On discrete subgroups of the 2 x 2 projective linear group over p-adic fields, J. Math. Soc. Japan18 (1966), 219-235. Zbl0158.27702MR223463
- [6] P. Koebe: Über die Uniformisierung der algebraischen Kurven IV, Math. Ann.75 (1914), 42-129. Zbl45.0669.01MR1511787JFM45.0669.01
- [7] Yu. I. Manin and V. Drinfeld: Periods of p-adic Schottky groups, J. Reine Angew. Math.262/263 (1972), 239-247. Zbl0275.14017MR396582
- [8] D. Mumford: An analytic construction of degenerating curves over complete local fields, Comp. Math.24 (1972), 129-174. Zbl0228.14011MR352105
- [9] D. Mumford: Tata lectures on theta II, Progress in Math.43 (1984), Birkhäuser. Zbl0549.14014MR742776
- [10] F. Schottky: Über eine spezielle Function, welche bei einer bestimmten linearen Transformation ihres Arguments unverändert bleibt, J. Reine Angew. Math.101 (1887), 227-272. JFM19.0424.02
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.