Some remarks on the moduli space of principally polarized abelian varieties with level ( 2 , 4 ) -structure

Ryuji Sasaki

Compositio Mathematica (1993)

  • Volume: 85, Issue: 1, page 87-97
  • ISSN: 0010-437X

How to cite

top

Sasaki, Ryuji. "Some remarks on the moduli space of principally polarized abelian varieties with level $(2, 4)$-structure." Compositio Mathematica 85.1 (1993): 87-97. <http://eudml.org/doc/90192>.

@article{Sasaki1993,
author = {Sasaki, Ryuji},
journal = {Compositio Mathematica},
keywords = {moduli space of principally polarized abelian varieties; theta functions},
language = {eng},
number = {1},
pages = {87-97},
publisher = {Kluwer Academic Publishers},
title = {Some remarks on the moduli space of principally polarized abelian varieties with level $(2, 4)$-structure},
url = {http://eudml.org/doc/90192},
volume = {85},
year = {1993},
}

TY - JOUR
AU - Sasaki, Ryuji
TI - Some remarks on the moduli space of principally polarized abelian varieties with level $(2, 4)$-structure
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 85
IS - 1
SP - 87
EP - 97
LA - eng
KW - moduli space of principally polarized abelian varieties; theta functions
UR - http://eudml.org/doc/90192
ER -

References

top
  1. 1 H. Cartan, Fonctions automorphes, Seminaire E.N.S. 1957/1958. Zbl0101.05601
  2. 2 C.H. Clemens and P.A. Griffith, The intermediate Jacobian of the cubic threefold, Ann. of Math.95 (1972), 281-356. Zbl0214.48302MR302652
  3. 3 B van Geemen, Siegel modular forms vanishing on the moduli space of curves, Inv. Math.78 (1984), 329-349. Zbl0568.14015MR767196
  4. 4 B. van Geemen, The Schottky problem and moduli spaces of Kummer varieties, Thesis, Utrecht, Netherland, 1985. Zbl0592.14037
  5. 5 B. van Geemen and G. van der Geer, Kummer varieties and the moduli spaces of abelian varieties, Amer. J. Math.108 (1986), 615-642. Zbl0612.14044MR844633
  6. 6 J.P. Glass, Theta constants of genus three. Compositio Math.40 (1980), 123-137. Zbl0385.14011MR558261
  7. 7 J. Igusa, On the graded ring of theta constants, Amer. J. Math.86 (1964), 219-246. Zbl0146.31703MR164967
  8. 8 J. Igusa, Theta functions, Grund, Math. Wiss. 194, Springer-Verlag, 1972. Zbl0251.14016MR325625
  9. 9 J. Igusa, On the variety associated with the ring of Thetanullwerte, Amer. J. Math.103 (1981). Zbl0463.14015MR610482
  10. 10 D. Mumford, Introduction to algebraic geometry, Lecture Notes, Harvard Univ.1967. 
  11. 11 D. Mumford, Varieties defined by quadratic equations, Questioni sulle varieta algebraiche. Corsi dal C.I.M.E. Edizioni CremoneseRoma, 1969. Zbl0198.25801MR282975
  12. 12 D. Mumford, Abelian varieties, Tata studies in Math. Oxford Univ. Press, 1969. Zbl0223.14022MR282985
  13. 13 D. Mumford and J. Fogarty, Geometric invariant theory, Ergebnisse der Math. 34, Springer-Verlag, 1982. Zbl0504.14008MR719371
  14. 14 D. Mumford, Lectures on theta II, Progr. in Math. 43Birkhäuser (1984). Zbl0549.14014MR742776
  15. 15 H. Rauch and H. Farkas, Theta functions with applications to Riemann surfaces, Williams and Wilkins, 1974. Zbl0292.30015MR352108
  16. 16 R. Sasaki, Modular forms vanishing at the reducible points of the Siegel upper-half space, J. für die reine angew. Math.345 (1983), 111-123. Zbl0513.10027MR717889
  17. 17 R. Sasaki, Moduli space of hyperelliptic period matrices with level 2 structure, to appear. Zbl0815.14031
  18. 18 T. Sekiguchi, On the cubics defining abelian varieties, J. Math. Soc. Japan30 (1978), 703-721. Zbl0387.14008MR513079
  19. 19 A. Seyama, A characterization of reducible abelian varieties, to appear. Zbl0955.05090

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.