An injectivity property for étale cohomology

Ofer Gabber

Compositio Mathematica (1993)

  • Volume: 86, Issue: 1, page 1-14
  • ISSN: 0010-437X

How to cite

top

Gabber, Ofer. "An injectivity property for étale cohomology." Compositio Mathematica 86.1 (1993): 1-14. <http://eudml.org/doc/90209>.

@article{Gabber1993,
author = {Gabber, Ofer},
journal = {Compositio Mathematica},
keywords = {injectivity property for étale cohomology},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Kluwer Academic Publishers},
title = {An injectivity property for étale cohomology},
url = {http://eudml.org/doc/90209},
volume = {86},
year = {1993},
}

TY - JOUR
AU - Gabber, Ofer
TI - An injectivity property for étale cohomology
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 1
SP - 1
EP - 14
LA - eng
KW - injectivity property for étale cohomology
UR - http://eudml.org/doc/90209
ER -

References

top
  1. [1] M. Artin, A. Grothendieck, and J.L. Verdier: Théorie des Topos et Cohomologie Étale des Schémas, Lecture Notes in Math. 269, 270, 305, Springer-Verlag (1972-73). MR354653
  2. [2] M. Artin: Grothendieck Topologies. Harvard University (1962). Zbl0208.48701
  3. [3] S. Bloch and K. Kato: p-adic Étale Cohomology, Publ. Math. IHES63 (1986), 107-152. Zbl0613.14017MR849653
  4. [4] O. Gabber: Some Theorems on Azumaya Algebras. In: Lecture Notes in Math. 844, Springer Verlag (1981). Zbl0472.14013MR611868
  5. [5] A. Grothendieck: Eléments de Géométrie Algébrique III (première partie), Publ. Math. IHES11 (1961); EGA IV, Publ. Math. IHES20, 24, 28, 32 (1964- 67). 
  6. [6] A. Grothendieck: Le Groupe de Brauer III. In: Dix Exposés sur la Cohomologie des Schémas. North Holland Pub. Co. (1968). Zbl0198.25901
  7. [7] R. Hartshome: Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag (1966). Zbl0212.26101MR222093
  8. [8] R. Hoobler: A Cohomological Interpretation of Brauer Groups of Rings, Pacific Journal of Math. 86 (1980) 89-92. Zbl0459.13002MR586870
  9. [9] K. Kato, Swan conductors for characters of degree one in the imperfect residue field case, Contemporary Math. Vol.83 (1989), 101-131. Zbl0716.12006MR991978

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.