The Noether-Lefschetz theorem and sums of 4 squares in the rational function field R ( x , y )

J.-L. Colliot-Thélène

Compositio Mathematica (1993)

  • Volume: 86, Issue: 2, page 235-243
  • ISSN: 0010-437X

How to cite

top

Colliot-Thélène, J.-L.. "The Noether-Lefschetz theorem and sums of 4 squares in the rational function field $R(x, y)$." Compositio Mathematica 86.2 (1993): 235-243. <http://eudml.org/doc/90219>.

@article{Colliot1993,
author = {Colliot-Thélène, J.-L.},
journal = {Compositio Mathematica},
keywords = {rational functions; polynomials; sum of four squares; sum of squares; Noether-Lefschetz theorem},
language = {eng},
number = {2},
pages = {235-243},
publisher = {Kluwer Academic Publishers},
title = {The Noether-Lefschetz theorem and sums of 4 squares in the rational function field $R(x, y)$},
url = {http://eudml.org/doc/90219},
volume = {86},
year = {1993},
}

TY - JOUR
AU - Colliot-Thélène, J.-L.
TI - The Noether-Lefschetz theorem and sums of 4 squares in the rational function field $R(x, y)$
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 86
IS - 2
SP - 235
EP - 243
LA - eng
KW - rational functions; polynomials; sum of four squares; sum of squares; Noether-Lefschetz theorem
UR - http://eudml.org/doc/90219
ER -

References

top
  1. 1 A. Buium: Sur le nombre de Picard des revêtements doubles des surfaces algébriques, C.R. Acad. Sc. Paris296 (1983) Série I, 361-364. Zbl0543.14017MR699163
  2. 2 J.W.S. Cassels: On the representation of rational functions as sums of squares, Acta Arithmetica9 (1964), 79-82. Zbl0131.25001MR162791
  3. 3 J W. S. Cassels, W. Ellison and A. Pfister: On sums of squares and on elliptic curves over function fields, J. Number Theory3 (1971), 125-149. Zbl0217.04302MR292781
  4. 4 M.R. Christie: Positive definite rational functions in two variables which are not the sum of three squares, J. Number Theory8 (1976), 224-232. Zbl0331.14017MR412162
  5. 5 J.-L. Colliot-Thélène:Real rational surfaces without a real point, Archiv der Mathematik.58 (1992) 392-396. Zbl0738.14023MR1152629
  6. 6 P. Deligne: Le théorème de Noether, in SGA 7 II, exp.XIX, SpringerL.N.M.340 (1973), 328-340. Zbl0269.14019
  7. 7 C. Delorme: Espaces projectifs anisotropes, Bull. Soc. Math. France103 (1975), 203-223. Zbl0314.14016MR404277
  8. 8 I. Dolgachev: Weighted projective varieties, in SpringerL.N.M.956 (1982), 34-71. Zbl0516.14014MR704986
  9. 9 L. Ein: An analogue of Max Noether's theorem, Duke Mathematical Journal52 (1985), 689-706. Zbl0589.14034MR808098
  10. 10 T. Ford: The Brauer group and ramified double covers of surfaces, preprint 1991. Zbl0779.13002MR1191982
  11. 11 P. Griffiths and J. Harris: On the Noether-Lefschetz theorem and some remarks on codimension-two cycles, Math. Ann.271 (1985), 31-51. Zbl0552.14011MR779603
  12. 12 D. Hilbert: Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann.42 (1888), 342-350. Zbl20.0198.02MR1510517JFM20.0198.02
  13. 13 D. Hilbert: Ueber ternäre definite Formen, Acta Math.17 (1893), 169-197. JFM25.0319.01
  14. 14 T.-Y. Lam: The algebraic theory of quadratic forms, Benjamin/Cummings1973. Zbl0437.10006MR634798
  15. 15 E. Landau: Ueber die Darstellung definiter Funktionen durch Quadrate, Math. Ann.62 (1906), 272-285. MR1511376JFM37.0252.01
  16. 16 S. Lefschetz: On certain numerical invariants of algebraic varieties with application to Abelian varieties, Trans. Amer. Math. Soc.22 (1921), 327-482. Zbl48.0428.03MR1501178JFM48.0428.03
  17. 17 S. Mori: On a generalisation of complete intersections, J. of Math. of Kyoto University15 (1975), 619-646. Zbl0332.14019MR393054
  18. 18 J. Steenbrink: On the Picard group of certain smooth surfaces in weighted projective space, in Algebraic geometry, Proceedings, La Rabida, 1981, SpringerL.N.M.961 (1982), 302-313. Zbl0507.14025MR708341
  19. 19 T. Terasoma: Complete intersections with middle Picard number 1 defined over Q, Math. Z.189 (1985), 289-296. Zbl0579.14006MR779223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.