An integral for the product of two Selberg-Jack symmetric polynomials

Kevin W. J. Kadell

Compositio Mathematica (1993)

  • Volume: 87, Issue: 1, page 5-43
  • ISSN: 0010-437X

How to cite


Kadell, Kevin W. J.. "An integral for the product of two Selberg-Jack symmetric polynomials." Compositio Mathematica 87.1 (1993): 5-43. <>.

author = {Kadell, Kevin W. J.},
journal = {Compositio Mathematica},
keywords = {Selberg's integral; Jack polynomials},
language = {eng},
number = {1},
pages = {5-43},
publisher = {Kluwer Academic Publishers},
title = {An integral for the product of two Selberg-Jack symmetric polynomials},
url = {},
volume = {87},
year = {1993},

AU - Kadell, Kevin W. J.
TI - An integral for the product of two Selberg-Jack symmetric polynomials
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 87
IS - 1
SP - 5
EP - 43
LA - eng
KW - Selberg's integral; Jack polynomials
UR -
ER -


  1. [An2] G.E. Andrews: q-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and Computer Algebra, CBMS Regional Conference Series in Mathematics, number 66, American Mathematical Society, Providence, RI, 1986. Zbl0594.33001MR858826
  2. [Ao1] K. Aomoto: Jacobi polynomials associated with Selberg's integral, SIAM J. Math. Analysis18 (1987), 545-549. Zbl0639.33001MR876291
  3. [Hab1] L. Habsieger: Une q-intégrale de Selberg-Askey, SIAM J. Math. Analysis19 (1988), 1475-1489. Zbl0664.33001MR965268
  4. [Han1] P. Hanlon: Jack symmetric functions and some combinatorial properties of Young symmetrizers, J. Combinatorial Theory (A) 47 (1988), 37-80. Zbl0641.20010MR924451
  5. [Hu1] L.K. Hua: Harmonic analysis of functions of several complex variables in the complex domains. Translations of mathematical monographs, Vol. 6, Amer. Math. Soc., Providence, RI, 1963. Zbl0112.07402
  6. [Ja1] H. Jack: A class of symmetric polynomials with a parameter, Proc. Royal Soc. Edinburgh (A)69 (1969-70), 1-17. Zbl0198.04606MR289462
  7. [Ka1] K.W.J. Kadell: A proof of some q-analogues of Selberg's integral for k = 1, SIAM J. Math. Analysis19 (1988), 944-968. Zbl0643.33003MR946654
  8. [Ka2] K.W.J. Kadell: A proof of Askey's conjectured q-analogue of Selberg's integral and a conjecture of Morris, SIAM J. Math. Analysis19 (1988), 969-986. Zbl0643.33004MR946655
  9. [Ka3] K.W.J. Kadell: The q-Selberg polynomials for n = 2, Trans. Amer. Math. Soc.310 (1988), 535-553. Zbl0706.33015MR973170
  10. [Ka4] K.W.J. Kadell: The Selberg-Jack symmetric functions, Advances in Math., to appear. Zbl0885.33009MR1467311
  11. [Ma1] I.G. Macdonald: Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford, 1979. Zbl0487.20007MR553598
  12. [Ma2] I.G. Macdonald: Second edition of [Ma1], to appear. MR1354144
  13. [Ma3] I.G. Macdonald: Orthogonal polynomials associated with root systems, to appear. MR1817334
  14. [Ri1] D. St. P. Richards: Analogs and Extensions of Selberg's integral, Proceedings of the IMA workshop on q-series and partitions, March 1988. Zbl0697.33007
  15. [Se1] A. Selberg: Bemerkninger om et multipelt integral, Norsk. Mat. Tidsskr.26 (1944), 71-78. Zbl0063.06870MR18287
  16. [St1] R.P. Stanley: Some combinatorial properties of Jack symmetric functions, Advances in Math.77 (1989), 76-115. Zbl0743.05072MR1014073
  17. [Sz1] G. Szegö: Orthogonal Polynomials, Colloquium Publications, Vol. 23, American Mathematical Society, Providence, RI, 1975. Zbl0023.21505MR372517
  18. [Ze1] D. Zeilberger: A proof of the G2 case of Macdonald's root system-Dyson conjecture, SIAM J. Math. Analysis18 (1987), 880-883. Zbl0643.05004MR883574

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.