The diameter function on the space of space form
Compositio Mathematica (1993)
- Volume: 87, Issue: 1, page 79-98
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 Cheeger, J. and Ebin, D.G.: Comparison Theorems in Riemannian Geometry, American Publishing Co., Inc., New York, 1975. Zbl0309.53035MR458335
- 2 Gromoll, D. and Grove, K.: A generalization of Berger's rigidity theorem for positively curved manifolds, Ann. Scientifiques de l'Ecole Normale Supérieure, 20 (1987), 227-239. Zbl0626.53032MR911756
- 3 Gromov, M.: Almost flat manifolds, J. Differential Geometry13 (1978), 231-241. Zbl0432.53020MR540942
- 4 McGowan, J.: The diameter function on the space of space forms, dissertation, University of Maryland, 1991. Zbl0777.53045
- 5 Michael, E.: Topologies on spaces of subsets, Transactions of the American Mathematical Society71 (1951), 152-182. Zbl0043.37902MR42109
- 6 Mostert, P.S.: On a compact Lie group acting on a manifold, Annals of Mathematics65 (1957), 447-455 and Errata 66, 589. Zbl0080.16702MR85460
- 7 Myers, S.: Riemannian manifolds in the large, Duke Math. J.1 (1935), 39-49. Zbl0011.22502MR1545863JFM61.0786.03
- 8 Raghunathan, M.S.: Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972. Zbl0254.22005MR507234
- 9 Varadarajan, V.S.: Lie Groups, Lie Algebras, and Their Representations, Springer-Verlag, New York, 1984. Zbl0955.22500MR746308
- 10 Vincent, G.: Les groupes Lineaires finis sans points fixes, Commentarii Mathematici Halvetici20 (1947), 117-171. Zbl0034.38102MR21936
- 11 Wolf, J.A.: Spaces of Constant Curvature, Publish or Perish, Wilmington, 1984. MR928600