Estimates for Fourier coefficients of Siegel cusp forms of degree two

Winfried Kohnen

Compositio Mathematica (1993)

  • Volume: 87, Issue: 2, page 231-240
  • ISSN: 0010-437X

How to cite

top

Kohnen, Winfried. "Estimates for Fourier coefficients of Siegel cusp forms of degree two." Compositio Mathematica 87.2 (1993): 231-240. <http://eudml.org/doc/90233>.

@article{Kohnen1993,
author = {Kohnen, Winfried},
journal = {Compositio Mathematica},
keywords = {estimates of Fourier coefficients; Siegel modular forms; Fourier-Jacobi expansion; Kloosterman sums; Jacobi form},
language = {eng},
number = {2},
pages = {231-240},
publisher = {Kluwer Academic Publishers},
title = {Estimates for Fourier coefficients of Siegel cusp forms of degree two},
url = {http://eudml.org/doc/90233},
volume = {87},
year = {1993},
}

TY - JOUR
AU - Kohnen, Winfried
TI - Estimates for Fourier coefficients of Siegel cusp forms of degree two
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 87
IS - 2
SP - 231
EP - 240
LA - eng
KW - estimates of Fourier coefficients; Siegel modular forms; Fourier-Jacobi expansion; Kloosterman sums; Jacobi form
UR - http://eudml.org/doc/90233
ER -

References

top
  1. [1] Bateman, H.: Higher Transcendental Functions. II. New York-Toronto-London, McGraw-Hill, 1953. MR58756
  2. [2] Böcherer, S. and Raghavan, S.: On Fourier coefficients of Siegel modular forms, J. reine angew. Math.384 (1988), 80-101. Zbl0636.10022MR929979
  3. [3] Eichler, M. and Zagier, D.: The Theory of Jacobi Forms (Progress in Maths. vol. 55), Birkhäuser, Boston, 1985. Zbl0554.10018MR781735
  4. [4] Fomenko, O.M.: Fourier coefficients of Siegel cusp forms of genus n, J. Soviet. Math.38 (1987), 2148-2157. Zbl0624.10022
  5. [5] Gross, B., Kohnen, W. and Zagier, D.: Heegner points and derivatives of L-series. II. Math. Ann.278 (1987), 497-562. Zbl0641.14013MR909238
  6. [6] Iwaniec, H.: Fourier coefficients of modular forms of half-integral weight. Invent Math.87 (1987), 385-401. Zbl0606.10017MR870736
  7. [7] Kitaoka, Y.: Fourier coefficients of Siegel cusp forms of degree two, Nagoya Math. J.93 (1984), 149-171. Zbl0531.10031MR738922
  8. [8] Kohnen, W. and Skoruppa, N.-P.: A certain Dirichlet series attached to Siegel modular forms of degree two. Invent. Math.95 (1989), 541-558. Zbl0665.10019MR979364
  9. [9] Landau, E.: Uber die Anzahl der Gitterpunkte in Gewissen Bereichen. II. Göttinger Nachr. (1915), 209-243.(Collected works, vol. 6, pp. 308-342. Essen: Thales, 1986.) Zbl45.0312.02JFM45.0312.02
  10. [10] Raghavan, S. and Weissauer, R.: Estimates for Fourier coefficients of cusp forms. In M. M. Dodson and J. A. G. Vickers eds., Number Theory and Dynamical Systems, pp. 87-102. London Math. Soc. Lect. Not. ser. vol. 134. Cambridge University Press, Cambridge, 1989. Zbl0686.10019MR1043707
  11. [11] Sato, M. and Shintani, T.: On zeta functions associated with prehomogeneous vector spaces, Ann. of Math.100 (1974), 131-170. Zbl0309.10014MR344230

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.