Curves of genus ten on K3 surfaces

Fernando Cukierman; Douglas Ulmer

Compositio Mathematica (1993)

  • Volume: 89, Issue: 1, page 81-90
  • ISSN: 0010-437X

How to cite

top

Cukierman, Fernando, and Ulmer, Douglas. "Curves of genus ten on K3 surfaces." Compositio Mathematica 89.1 (1993): 81-90. <http://eudml.org/doc/90253>.

@article{Cukierman1993,
author = {Cukierman, Fernando, Ulmer, Douglas},
journal = {Compositio Mathematica},
keywords = {moduli space of K3 surfaces; moduli space of curves; Wahl map},
language = {eng},
number = {1},
pages = {81-90},
publisher = {Kluwer Academic Publishers},
title = {Curves of genus ten on K3 surfaces},
url = {http://eudml.org/doc/90253},
volume = {89},
year = {1993},
}

TY - JOUR
AU - Cukierman, Fernando
AU - Ulmer, Douglas
TI - Curves of genus ten on K3 surfaces
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 89
IS - 1
SP - 81
EP - 90
LA - eng
KW - moduli space of K3 surfaces; moduli space of curves; Wahl map
UR - http://eudml.org/doc/90253
ER -

References

top
  1. [A-C] E. Arbarello and M. Cornalba: The Picard groups of the moduli spaces of curves, Topology26 (1987), 153-171. Zbl0625.14014MR895568
  2. [B-M] A. Beauville and J.Y. Merindol: Sections hyperplanes des surfaces K3, Duke Math. J.55 (1987), 873-878. Zbl0663.14028MR916124
  3. [B] R. Bott: Homogeneous vector bundles, Annals of Math (2) 66 (1957), 203-248. Zbl0094.35701MR89473
  4. [B-E-L] A. Bertram, L. Ein and R. Lazarsfeld: Surjectivity of Gaussian maps for line bundles of large degree on curves, Preprint (1990). Zbl0752.14036MR1181203
  5. [C-H-M] C. Ciliberto, J. Harris and R. Miranda: On the surjectivity of the Wahl map, Duke Math. J.57 (1988), 829-858. Zbl0684.14009MR975124
  6. [C] F. Cukierman: Families of Weierstrass points, Duke Math. J.58 (1989), 317-346. Zbl0687.14026MR1016424
  7. [G-L] M. Green and R. Lazarsfeld: Special divisors on curves on a K3 surface, Invent. Math.89 (1987), 357-370. Zbl0625.14022MR894384
  8. [G-H] P. Griffiths and J. Harris: Principles of Algebraic Geometry, Wiley, New York, 1978. Zbl0408.14001MR507725
  9. [K] K. Kodaira: On compact complex analytic surfaces I, Annals of Math. (2) 71 (1960), 111-152. Zbl0098.13004MR132556
  10. [Ma] A. Mayer: Families of K-3 surfaces, Nagoya Math. J.48 (1972), 1-17. Zbl0244.14012MR330172
  11. [M-M] S. Mori and S. Mukai: The uniruledness of the moduli space of curves of genus 11, Algebraic Geometry. Proceedings of the Japanese-French Conference held at Tokyo and Kyoto (Lecture Notes in Mathematics1016) (1983), 334-353. Zbl0557.14015MR726433
  12. [M] S. Mukai: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10 Algebraic Geometry and Commutative Algebra in honor of Masayoshi Nagata, Academic Press, Orlando (1987), 357-377. Zbl0701.14044
  13. [Mu] D. Mumford: Stability of projective varieties, L'Enseignement Math.24 (1977), 39-110. Zbl0363.14003MR450272
  14. [V] C. Voisin: Sur l'application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Preprint (1990). Zbl0767.14012
  15. [W] J. Wahl: The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J.55 (1987), 843-871. Zbl0644.14001MR916123

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.