On the Kodaira dimension of the moduli space of K3 surfaces
Compositio Mathematica (1993)
- Volume: 89, Issue: 3, page 251-299
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKondō, Shigeyuki. "On the Kodaira dimension of the moduli space of K3 surfaces." Compositio Mathematica 89.3 (1993): 251-299. <http://eudml.org/doc/90261>.
@article{Kondō1993,
author = {Kondō, Shigeyuki},
journal = {Compositio Mathematica},
keywords = {K3 surface; principal polarization; period space; toroidal compactification},
language = {eng},
number = {3},
pages = {251-299},
publisher = {Kluwer Academic Publishers},
title = {On the Kodaira dimension of the moduli space of K3 surfaces},
url = {http://eudml.org/doc/90261},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Kondō, Shigeyuki
TI - On the Kodaira dimension of the moduli space of K3 surfaces
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 89
IS - 3
SP - 251
EP - 299
LA - eng
KW - K3 surface; principal polarization; period space; toroidal compactification
UR - http://eudml.org/doc/90261
ER -
References
top- [1] Ash, A., Mumford, D., Rapoport, M., and Tai, Y.: Smooth compactification of locally symmetric varieties, Math. Sci. Press (1975). Zbl0334.14007MR457437
- [2] Atiyah, M. and Singer, I.: Index of elliptic operators III, Ann. Math.87 (1968) 546-604. Zbl0164.24301MR236952
- [3] Baily, W.L. Jr.: Fourier-Jacobi series, Proc. Symp. Pure Math. 9, "Algebraic Groups and Discontinuous Subgroups", Amer. Math. Soc., Providence (1966) 296-300. Zbl0164.38501MR219755
- [4] Baily, W.L. Jr. and Borel, A.: Compactification of arithmetic quotient of bounded domains, Ann. Math.84 (1966) 442-528. Zbl0154.08602MR216035
- [5] Dieudonné, J.: La géométrie des groupes classiques (2nd ed.), Springer1963. Zbl0111.03102MR158011
- [6] Freitag, E.: Siegelsche Modulfunktionen, Springer (1983). Zbl0498.10016MR871067
- [7] Harris, J. and Mumford, D.: On the Kodaira dimension of the moduli space of curves, Invent. Math.67 (1982) 23-86. Zbl0506.14016MR664324
- [8] Igusa, J.: Theta function, Springer (1972). Zbl0251.14016
- [9] Kempf, G., Knudsen, F., Mumford, D., Saint- Donat, B.: Toroidal embeddings I, Lect. Notes in Math., Vol. 339 (1972) Springer. Zbl0271.14017MR335518
- [10] Kulikov, V.: Epimorphicity of the period mapping for surfaces of type K3 (in Russian), Usp. Math. Nauk.32 (1977) 257-258. Zbl0449.14008MR480528
- [11] Mukai, S.: Curves, K3 surfaces and Fano 3-folds of genus ≤ 10, in Algebraic Geometry and commutative algebra in Honor of M. Nagata, 357-377, Kinokuniya (1987). Zbl0701.14044
- [12] Mumford, D.: Hirzebruch proportionality principles in non-compact case, Invent. Math.42 (1977) 239-272. Zbl0365.14012MR471627
- [13] Mumford, D.: On the Kodaira dimension of the Siegel modular variety, Lect. Notes in Math., Vol. 997 (1983), 348-375, Springer. Zbl0527.14036MR714757
- [14] Namikawa, Y.: Toroidal compactification of Siegel space, Lecture Notes in Math. Vol. 812 (1980), Springer. Zbl0466.14011MR584625
- [15] Nikulin, V.V.: Finite automorphism groups of Kähler surfaces of type K3, Proc. Moscow Math. Soc.38 (1979) 75-137. Zbl0433.14024
- [16] Nikulin, V.V.: Integral symmetric bilinear forms and some of their applications, Math. USSR Izv.14 (1980) 103-166. Zbl0427.10014
- [17] Piatetskii-Shapiro, I.: Géométrie des domaines classiques et theorie des fonctions automorphes, Dunot, Paris (1966). Zbl0142.05101
- [18] Piatetskii-Shapiro, I. and Shafarevich, I.R.: A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv.35 (1971) 530-572. Zbl0219.14021
- [19] Satake, I.: Algebraic structures of symmetric domains, Publ. Math. Soc. Japan,Vol. 14, Iwanami, Tokyo and Princeton Univ. Press, 1980. Zbl0483.32017MR591460
- [20] Scattone, F.: On the compactification of moduli spaces for algebraic K3 surfaces, Memoirs of A.M.S., Vol. 70, No. 374 (1987). Zbl0633.14019MR912636
- [21] Serre, J.P.: A Course in Arithmetic, Springer (1973). Zbl0256.12001MR344216
- [22] Shimura, G.: Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, Vol. 11, Iwanami, Tokyo and Princeton Univ. Press (1971). Zbl0221.10029MR314766
- [23] Tai, Y.: On the Kodaira dimension of the moduli space of abelian varieties, Invent. Math.68 (1982) 425-439. Zbl0508.14038MR669424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.