Convexity for invariant differential operators on semisimple symmetric spaces
E. P. Van den Ban; H. Schlichtkrull
Compositio Mathematica (1993)
- Volume: 89, Issue: 3, page 301-313
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVan den Ban, E. P., and Schlichtkrull, H.. "Convexity for invariant differential operators on semisimple symmetric spaces." Compositio Mathematica 89.3 (1993): 301-313. <http://eudml.org/doc/90262>.
@article{VandenBan1993,
author = {Van den Ban, E. P., Schlichtkrull, H.},
journal = {Compositio Mathematica},
keywords = {invariant differential operator; convexity; reductive symmetric space},
language = {eng},
number = {3},
pages = {301-313},
publisher = {Kluwer Academic Publishers},
title = {Convexity for invariant differential operators on semisimple symmetric spaces},
url = {http://eudml.org/doc/90262},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Van den Ban, E. P.
AU - Schlichtkrull, H.
TI - Convexity for invariant differential operators on semisimple symmetric spaces
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 89
IS - 3
SP - 301
EP - 313
LA - eng
KW - invariant differential operator; convexity; reductive symmetric space
UR - http://eudml.org/doc/90262
ER -
References
top- [1] E van den Ban: A convexity theorem for semisimple symmetric spaces, Pac. J. Math.124 (1986), 21-55. Zbl0599.22014MR850665
- [2] E van den Ban: Asymptotic behaviour of matrix coefficients related to reductive symmetric spaces, Proc. Kon. Nederl. Akad. Wet90 (1987), 225-249. Zbl0629.43008MR914083
- [3] E. van den Ban and H. Schlichtkrull: The most continuous part of the Plancherel decomposition for a reductive symmetric space. In preparation. Zbl0878.43018
- [4] E. van den Ban and H. Schlichtkrull: Multiplicities in the Plancherel decomposition for a semisimple symmetric space. In (R. L. Lipsman e.a. eds) Representation Theory of Groups and Algebras, Contemp. Math., Vol. 145, p. 163-180. Amer. Math. Soc., Providence1993. Zbl0809.43004MR1216188
- [5] A. Cérézo and F. Rouvière: Opérateurs différentiels invariants sur un groupe de Lie, Sém. Goulaouic-Schwartz 1972-73 (1973), Exposé X, p. X.1-X.9. Zbl0259.58012MR430153
- [6] W. Chang: Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces, J. Funct. Anal.34 (1979), 481-492. Zbl0431.58015MR556268
- [7] W. Chang: Invariant differential operators and P-convexity of solvable Lie groups, Adv. in Math.46 (1982), 284-304. Zbl0506.22012MR683203
- [8] J. Dadok: Solvability of invariant differential operators of principal type on certain Lie groups and symmetric spaces, J. d'Anal. Math.37 (1980), 118-127. Zbl0445.58031MR583634
- [9] M. Duflo and D. Wigner: Convexité pour les operateurs différentiels invariants sur les groupes de Lie, Math. Zeit.167 (1979), 61-80. Zbl0387.43007MR532886
- [10] M. Flensted-Jensen: Spherical functions on a real semisimple Lie group. A method of reduction to the complex case, J. Funct. Anal.30 (1978), 106-146. Zbl0419.22019MR513481
- [11] M. Flensted-Jensen: Analysis on Non-Riemannian Symmetric Spaces, Regional Conference Series in Math. 61, Amer. Math. Soc., Providence1986. Zbl0589.43008MR837420
- [12] Harish-Chandra: Spherical functions on a semisimple Lie group, I, Amer. J. Math.80 (1958), 241-310. Zbl0093.12801MR94407
- [13] S. Helgason: Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math.86 (1964), 565-601. Zbl0178.17001MR165032
- [14] S. Helgason: The surjectivity of invariant differential operators on symmetric spaces I, Ann. of Math.98 (1973), 451-479. Zbl0274.43013MR367562
- [15] S. Helgason: Groups and Geometric Analysis, Academic Press, Orlando1984. Zbl0543.58001MR754767
- [16] S. Helgason: Invariant differential operators and Weyl group invariants. In (W. Barker and P. Sally, eds.) Harmonic Analysis on Reductive Groups, Bowdoin College1989, Birkhäuser, Boston1991, p. 193-200. Zbl0760.43002MR1168483
- [17] L. Hörmander: Linear Partial Differential Operators, Springer Verlag, Berlin1963. Zbl0108.09301
- [18] T. Oshima and J. Sekiguchi: Eigenspaces of invariant differential operators on a semisimple symmetric space, Invent. Math.57 (1980), 1-81. Zbl0434.58020MR564184
- [19] J. Rauch and D. Wigner: Global solvability of the Casimir operators, Ann. of Math.103 (1976), 229-236. Zbl0323.58021MR425017
- [20] F. Rouvière: Invariant differential equations on certain semisimple Lie groups, Trans. Amer. Math. Soc.243 (1978), 97-114. Zbl0399.58023MR502896
- [21] H. Schlichtkrull: Harmonic Analysis on Symmetric Spaces, Birkhäuser, Boston1984. MR757178
- [22] F. Treves: Linear Partial Differential Equations, Gordon and Breach, New York1970. Zbl0209.12001
- [23] O. Zariski and P. Samuel: Commutative Algebra, Vol. I, Van Nostrand, Princeton1958. Zbl0121.27801MR90581
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.