The adjoint of a positive semigroup
J. M. A. M. Van Neerven; B. de Pagter
Compositio Mathematica (1994)
- Volume: 90, Issue: 1, page 99-118
- ISSN: 0010-437X
Access Full Article
topHow to cite
topVan Neerven, J. M. A. M., and de Pagter, B.. "The adjoint of a positive semigroup." Compositio Mathematica 90.1 (1994): 99-118. <http://eudml.org/doc/90270>.
@article{VanNeerven1994,
author = {Van Neerven, J. M. A. M., de Pagter, B.},
journal = {Compositio Mathematica},
keywords = {positive -semigroup on a Banach lattice; projection band; lattice semigroup},
language = {eng},
number = {1},
pages = {99-118},
publisher = {Kluwer Academic Publishers},
title = {The adjoint of a positive semigroup},
url = {http://eudml.org/doc/90270},
volume = {90},
year = {1994},
}
TY - JOUR
AU - Van Neerven, J. M. A. M.
AU - de Pagter, B.
TI - The adjoint of a positive semigroup
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 1
SP - 99
EP - 118
LA - eng
KW - positive -semigroup on a Banach lattice; projection band; lattice semigroup
UR - http://eudml.org/doc/90270
ER -
References
top- [AB] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Pure and Applied Math. 119, Academic Press, 1985. Zbl0608.47039MR809372
- [BB] P.L. Butzer, and H. Berens, Semigroups of Operators and Approximation, Springer-Verlag, New York (1967). Zbl0164.43702MR230022
- [C1] Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme, Perturbation theory for dual semigroups, Part I: The sun-reflexive case, Math. Ann.277 (1987) 709-725; Part II: Time-dependent perturbations in the sun-reflexive case, Proc. Roy. Soc. Edinb.109A (1988) 145-172; Part III: Nonlinear Lipschitz perturbations in the sun-reflexive case, In: G. Da Prato, M. Iannelli (eds.), Volterra Integro Differential Equations in Banach Spaces and Applications, Longman, (1989) 67-89; Part IV: The intertwining formula and the canonical pairing, In: Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, Vol. 116, Marcel Dekker Inc., New York- Basel (1989); Part V: Variation of constants formulas, In: Semigroup Theory and Evolution Equations, Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York -Basel (1991). Zbl0675.47036MR901713
- [GN] A. Grabosch and R. Nagel, Order structure of the semigroup dual: a counterexample, Indag. Math.92 (1989) 199-201. Zbl0697.47037MR1005051
- [GM] C.C. Graham and O.C. McGehee, Essays in Commutative Harmonic Analysis, Springer-Verlag, New York, Heidelberg, Berlin (1979). Zbl0439.43001MR550606
- [M] P. Meyer-Nieberg, Banach Lattices, Springer-Verlag, Berlin, Heidelberg, New York (1991). Zbl0743.46015MR1128093
- [MG] H. Milicer-Gruzewska, Sur la continuité de la variation, C. R. Soc. Sci. de Varsovie, 21 (1928) 164-177. JFM57.1390.02
- [Na] R. Nagel (ed.), One-parameter Semigroups of Positive Operators, Springer Lect. Notes in Math. 1184 (1986). Zbl0585.47030MR839450
- [Ne] J.M.A.M. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springer-Verlag, Berlin, Heidelberg, New York (1992). Zbl0780.47026MR1222650
- [NP] J.M.A.M. van Neerven and B. de Pagter, Certain semigroups on Banach function spaces and their adjoints, In: Semigroup Theory and Evolution Equations. Lecture Notes in Pure and Applied Mathematics, Vol. 135, Marcel Dekker Inc., New York- Basel (1991). Zbl0745.47027MR1164664
- [Pa1] B. de Pagter, A characterization of sun-reflexivity, Math. Ann.283 (1989) 511-518. Zbl0696.47039MR985246
- [Pa2] B. de Pagter, A Wiener-Young-type theorem for dual semigroups, Appl. Math.27 (1992) 101-109. Zbl0895.47030MR1184882
- [Ph] R.S. Phillips, The adjoint semi-group, Pac. J. Math.5 (1955) 269-283. Zbl0064.11202MR70976
- [P1] A. Plessner, Eine Kennzeichnung der totalstetigen Funktionen, J. f. Reine u. Angew. Math.60 (1929) 26-32. Zbl55.0143.03JFM55.0143.03
- [S] H.H. Schaefer, Banach Lattices and Positive Operators, Springer Verlag, Berlin, Heidelberg, New York (1974). Zbl0296.47023MR423039
- [WY] N. Wiener and R.C. Young, The total variation of g(x + h) - g(x), Trans. Am. Math. Soc.35 (1933) 327-340. Zbl0006.19401MR1501686JFM59.0284.03
- [Z] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam (1983). Zbl0519.46001MR704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.