A remark on differential operator algebras and an equivalence of categories

William M. McGovern

Compositio Mathematica (1994)

  • Volume: 90, Issue: 3, page 305-313
  • ISSN: 0010-437X

How to cite

top

McGovern, William M.. "A remark on differential operator algebras and an equivalence of categories." Compositio Mathematica 90.3 (1994): 305-313. <http://eudml.org/doc/90276>.

@article{McGovern1994,
author = {McGovern, William M.},
journal = {Compositio Mathematica},
keywords = {equivariant twisted differential operators; parabolic subgroups; generalized flag varieties; surjectivity; finite vectors},
language = {eng},
number = {3},
pages = {305-313},
publisher = {Kluwer Academic Publishers},
title = {A remark on differential operator algebras and an equivalence of categories},
url = {http://eudml.org/doc/90276},
volume = {90},
year = {1994},
}

TY - JOUR
AU - McGovern, William M.
TI - A remark on differential operator algebras and an equivalence of categories
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 90
IS - 3
SP - 305
EP - 313
LA - eng
KW - equivariant twisted differential operators; parabolic subgroups; generalized flag varieties; surjectivity; finite vectors
UR - http://eudml.org/doc/90276
ER -

References

top
  1. 1 Beilinson, A. and Bernstein, J., Localisation de g-modules, C. R. Acad. Sci.292 (1981), 15-18. Zbl0476.14019MR610137
  2. 2 Bernstein, J. and Gelfand, S.I., Tensor products of finite and infinite dimensional representations of semisimple Lie algebras, Comp. Math.41 (1980), 245 - 285. Zbl0445.17006MR581584
  3. 3 Borho, W. and Brylinski, J.-L., Differential operators on homogeneous spaces I: Irreducibility of the associated variety for annihilators of induced modules, Inv. Math.69 (1982), 437-476. Zbl0504.22015MR679767
  4. 4 Borho, W. and Jantzen, J.C., Über primitive Ideale in der Einhüllenden einer halbeinfacher Lie-Algebra, Inv. Math.39 (1977), 1-53. Zbl0327.17002MR453826
  5. 5 Brylinski, J.-L., Differential operators on the flag varieties, in Proceedings, Conference on Young Tableaux and Schur Functors in Algebra and Geometry, Torùn, 1980, Astérisque87-88 (1981), 43-60. Zbl0537.14010MR646814
  6. 6 Conze, N. and Duflo, M., Sur les représentations induites des algèbres de Lie semisimples complexes, Comp. Math.34 (1976), 307 - 336. Zbl0389.22016
  7. 7 Gabber, O. and Joseph, A., On the Bernstein-Gelfand-Gelfand resolution and the Duflo sum formula, Comp. Math.43 (1981), 107-131. Zbl0461.17004MR631430
  8. 8 Jantzen, J.C., Einhüllende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihre Grenzgebiete, Band 3, Springer-Verlag, New York, 1983. Zbl0541.17001MR721170
  9. 9 Joseph, A., On the annihilators of the simple subquotients of the principal series, Ann. Ec. Norm. Sup.10 (1977), 419 - 440. Zbl0386.17004MR480653
  10. 10 Joseph, A., Dixmier's problem for Verma and principal series submodules, J. London Math. Soc.20 (1979) 193 - 204. Zbl0421.17005MR551445
  11. 11 Joseph, A., Kostant's problem, Goldie rank, and the Gelfand-Kirillov conjecture, Inv. Math.56 (1980), 191- 213. Zbl0446.17006MR561970
  12. 12 Vogan, D., The orbit method and primitive ideals for semisimple Lie algebras, In: Lie Algebras and Related Topics, Canad. Math. Soc. Conf. Proc., vol. 5, (D. Britten et al., eds.), American Mathematical Society for CMS, Providence, RI, 1986, 281- 316. Zbl0585.17008MR832204
  13. 13 Vogan, D., Dixmier algebras, sheets, and representations theory, In: Actes du colloque en l'honneur de Jacques Dixmier, Paris, 1989, Progress in Math. # 92, Birkhäüser, Boston, 1990, 333-395. Zbl0854.17010MR1103596

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.