The Yang-Baxter and pentagon equation

A. Van Daele; S. Van Keer

Compositio Mathematica (1994)

  • Volume: 91, Issue: 2, page 201-221
  • ISSN: 0010-437X

How to cite


Van Daele, A., and Van Keer, S.. "The Yang-Baxter and pentagon equation." Compositio Mathematica 91.2 (1994): 201-221. <>.

author = {Van Daele, A., Van Keer, S.},
journal = {Compositio Mathematica},
keywords = {Yang-Baxter equation; finite-dimensional *-Hopf algebra; quantum double; Pentagon equation},
language = {eng},
number = {2},
pages = {201-221},
publisher = {Kluwer Academic Publishers},
title = {The Yang-Baxter and pentagon equation},
url = {},
volume = {91},
year = {1994},

AU - Van Daele, A.
AU - Van Keer, S.
TI - The Yang-Baxter and pentagon equation
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 91
IS - 2
SP - 201
EP - 221
LA - eng
KW - Yang-Baxter equation; finite-dimensional *-Hopf algebra; quantum double; Pentagon equation
UR -
ER -


  1. 1 E. Abe, Hopf Algebras. Cambridge University Press (1977). Zbl0476.16008MR594432
  2. 2 S. Baaj and G. Skandalis, Unitaires Multiplicatifs et dualité pour les Produits Croisés de C*-Algèbres. Ann. Scient. Éc. Norm. Sup., 4e série, t.26 (1993) 425-488. Zbl0804.46078MR1235438
  3. 3 V.G. Drinfel'd, Quantum Groups. Proceedings ICM Berkeley (1986), 798-820. Zbl0667.16003MR934283
  4. 4 M. Jimbo, Introduction to the Yang-Baxter equation. Int. J. of Modern Physics4 (1989) 3759-3777. Zbl0697.35131MR1017340
  5. 5 T. Koomwinder, Seminar notes, Amsterdam (1991). 
  6. 6 S. Majid, Non-commutative geometric groups by a bicrossproduct construction: Hopf algebras at the Planck scale. Thesis Harvard University (1988). 
  7. 7 S. Majid, Physics for Algebraists: Non-commutative and Non-commutative Hopf Algebras by Bicrossproduct Construction. Journal of Algebra130 (1990), 17-64. Zbl0694.16008MR1045735
  8. 8 S. Majid, More examples of bicrossproduct and double cross product Hopf algebras. Israel Journal of Mathematics72, Nos. 1-2, (1990), 133-148. Zbl0725.17015MR1098985
  9. 9 S. Majid, Hopf-von Neumann Algebra Bicrossproducts, Kac algebra Bicrossproducts, and the Classical Yang-Baxter Equations. Journal of Functional Analysis95 (1991), 291-319. Zbl0741.46033MR1092128
  10. 10 P. Podleś and S.L. Woronowicz, Quantum deformation of Lorentz group. Commun. Math. Phys.130 (1990), 381-431. Zbl0703.22018MR1059324
  11. 11 G. Skandalis, Operator Algebras and Duality. Proceedings of the ICM Kyoto (1990), 997-1009. Zbl0819.46054MR1159285
  12. 12 M.E. Sweedler, Hopf Algebras. Mathematical Lecture Note Series. Benjamin. N.Y., 1969. Zbl0194.32901MR252485
  13. 13 M. Takeuchi, Matched pairs of groups and bismash products of Hopf algebras. Communications in Algebra9(8) (1981), 841-882. Zbl0456.16011MR611561
  14. 14 A. Van Daele, Dual pairs of Hopf *-algebras. K. U. Leuven, preprint (1990) (first version), Bull. London Math. Soc.25 (1993) 209-230 (second version). Zbl0796.16034MR1209245
  15. 15 S.L. Woronowicz, Compact Matrix Pseudogroups. Comm. Math. Physics111 (1987), 613-665. Zbl0627.58034MR901157
  16. 16 S.L. Woronowicz, Unbounded elements affiliated with C*-algebras and non-compact quantum groups. University of Kyoto, preprint (to appear in Commun. Math. Phys.). Zbl0743.46080MR1096123
  17. 17 S.L. Woronowicz, Solutions of the braid equation related to a Hopf algebra. University of Warsaw, preprint (1991). Zbl0745.16021MR1148506

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.