# ${K}_{2}$ of Fermat curves with divisorial support at infinity

Compositio Mathematica (1994)

- Volume: 91, Issue: 3, page 223-240
- ISSN: 0010-437X

## Access Full Article

top## How to cite

topRoss, Raymond. "$K_2$ of Fermat curves with divisorial support at infinity." Compositio Mathematica 91.3 (1994): 223-240. <http://eudml.org/doc/90290>.

@article{Ross1994,

author = {Ross, Raymond},

journal = {Compositio Mathematica},

keywords = {-functions; Beilinson conjectures; regulator; Fermat equation},

language = {eng},

number = {3},

pages = {223-240},

publisher = {Kluwer Academic Publishers},

title = {$K_2$ of Fermat curves with divisorial support at infinity},

url = {http://eudml.org/doc/90290},

volume = {91},

year = {1994},

}

TY - JOUR

AU - Ross, Raymond

TI - $K_2$ of Fermat curves with divisorial support at infinity

JO - Compositio Mathematica

PY - 1994

PB - Kluwer Academic Publishers

VL - 91

IS - 3

SP - 223

EP - 240

LA - eng

KW - -functions; Beilinson conjectures; regulator; Fermat equation

UR - http://eudml.org/doc/90290

ER -

## References

top- [1] H. Bass and J. Tate: The Milnor ring of a global field. In Springer Lecture Notes342. Springer-Verlag, 1973. Zbl0299.12013MR442061
- [2] A.A. Beilinson: Higher regulators and values of L-functions of curves. Functional Analysis and its Applications14 (1980) 116-118. Zbl0475.14015MR575206
- [3] A.A. Beilinson: Higher regulators and values of L-functions. Journal of Soviet Math.30(2) (1985) 2036-2070. Zbl0588.14013
- [4] S. Bloch: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Lectures given at the University of California atIrvine, 1977.
- [5] S. Bloch: Lectures on Algebraic Cycles. Duke Mathematical Series. Duke University Press, 1980. Zbl0436.14003MR558224
- [6] S. Bloch: The dilogarithm and extensions of Lie algebras. In Lecture Notes in Mathematics854. Springer-Verlag (1981) pp. 1-23. Zbl0469.14009MR618298
- [7] R. Coleman: Torsion points on Fermat curves. Compositio Math.58 (1986) 191-208. Zbl0604.14019MR844409
- [8] H. Ésnault and E. Viehweg: Deligne-Beilinson cohomology. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 43-91. Zbl0656.14012MR944991
- [9] H. Garland: A finiteness theorem for K2 of a number field. Ann. Math.94(2) (1971) 534-548. Zbl0247.12103MR297733
- [10] J. Milnor: Introduction to Algebraic K-Theory, Vol. 72 of Annals of Mathematical Studies. Princeton University Press, 1971. Zbl0237.18005MR349811
- [11] D. Ramakrishnan: Regulators, algebraic cycles, and values of L-functions. In Contemporary Mathematics83. American Mathematical Society (1989) pp. 183-310. Zbl0694.14002MR991982
- [12] D. Rohrlich: Points at infinity on the Fermat curves. Invent. Math.39 (1977) 95-127. Zbl0357.14010MR441978
- [13] D. Rohrlich: Elliptic curves and values of L-functions. In CMS Conference Proceedings 7 (1987) pp. 371-387. Zbl0632.14020MR894330
- [14] R. Ross: On a certain subgroup of K2 of the Fermat curves. In preparation.
- [15] R. Ross: K2 of Fermat curves and values of L-functions. C.R. Acad. Sci. Paris312 (1991) 1-5. Zbl0744.14006MR1086490
- [16] S. Rosset and J. Tate: A reciprocity law for K2-traces. Comment. Math. Helvetici58 (1983) 38-47. Zbl0514.18010MR699005
- [17] N. Schappacher and A. Scholl: Beilinson's theorem on modular curves. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 273-304. Zbl0676.14006MR944997
- [18] P. Schneider: Introduction to the Beilinson conjectures. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 1-35. Zbl0673.14007MR944989
- [19] J.-P. Serre and J. Tate: Good reduction of abelian varieties. Annals of Math. (1968) 492-517. Zbl0172.46101MR236190

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.