K 2 of Fermat curves with divisorial support at infinity

Raymond Ross

Compositio Mathematica (1994)

  • Volume: 91, Issue: 3, page 223-240
  • ISSN: 0010-437X

How to cite

top

Ross, Raymond. "$K_2$ of Fermat curves with divisorial support at infinity." Compositio Mathematica 91.3 (1994): 223-240. <http://eudml.org/doc/90290>.

@article{Ross1994,
author = {Ross, Raymond},
journal = {Compositio Mathematica},
keywords = {-functions; Beilinson conjectures; regulator; Fermat equation},
language = {eng},
number = {3},
pages = {223-240},
publisher = {Kluwer Academic Publishers},
title = {$K_2$ of Fermat curves with divisorial support at infinity},
url = {http://eudml.org/doc/90290},
volume = {91},
year = {1994},
}

TY - JOUR
AU - Ross, Raymond
TI - $K_2$ of Fermat curves with divisorial support at infinity
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 91
IS - 3
SP - 223
EP - 240
LA - eng
KW - -functions; Beilinson conjectures; regulator; Fermat equation
UR - http://eudml.org/doc/90290
ER -

References

top
  1. [1] H. Bass and J. Tate: The Milnor ring of a global field. In Springer Lecture Notes342. Springer-Verlag, 1973. Zbl0299.12013MR442061
  2. [2] A.A. Beilinson: Higher regulators and values of L-functions of curves. Functional Analysis and its Applications14 (1980) 116-118. Zbl0475.14015MR575206
  3. [3] A.A. Beilinson: Higher regulators and values of L-functions. Journal of Soviet Math.30(2) (1985) 2036-2070. Zbl0588.14013
  4. [4] S. Bloch: Higher regulators, algebraic K-theory, and zeta functions of elliptic curves. Lectures given at the University of California atIrvine, 1977. 
  5. [5] S. Bloch: Lectures on Algebraic Cycles. Duke Mathematical Series. Duke University Press, 1980. Zbl0436.14003MR558224
  6. [6] S. Bloch: The dilogarithm and extensions of Lie algebras. In Lecture Notes in Mathematics854. Springer-Verlag (1981) pp. 1-23. Zbl0469.14009MR618298
  7. [7] R. Coleman: Torsion points on Fermat curves. Compositio Math.58 (1986) 191-208. Zbl0604.14019MR844409
  8. [8] H. Ésnault and E. Viehweg: Deligne-Beilinson cohomology. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 43-91. Zbl0656.14012MR944991
  9. [9] H. Garland: A finiteness theorem for K2 of a number field. Ann. Math.94(2) (1971) 534-548. Zbl0247.12103MR297733
  10. [10] J. Milnor: Introduction to Algebraic K-Theory, Vol. 72 of Annals of Mathematical Studies. Princeton University Press, 1971. Zbl0237.18005MR349811
  11. [11] D. Ramakrishnan: Regulators, algebraic cycles, and values of L-functions. In Contemporary Mathematics83. American Mathematical Society (1989) pp. 183-310. Zbl0694.14002MR991982
  12. [12] D. Rohrlich: Points at infinity on the Fermat curves. Invent. Math.39 (1977) 95-127. Zbl0357.14010MR441978
  13. [13] D. Rohrlich: Elliptic curves and values of L-functions. In CMS Conference Proceedings 7 (1987) pp. 371-387. Zbl0632.14020MR894330
  14. [14] R. Ross: On a certain subgroup of K2 of the Fermat curves. In preparation. 
  15. [15] R. Ross: K2 of Fermat curves and values of L-functions. C.R. Acad. Sci. Paris312 (1991) 1-5. Zbl0744.14006MR1086490
  16. [16] S. Rosset and J. Tate: A reciprocity law for K2-traces. Comment. Math. Helvetici58 (1983) 38-47. Zbl0514.18010MR699005
  17. [17] N. Schappacher and A. Scholl: Beilinson's theorem on modular curves. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 273-304. Zbl0676.14006MR944997
  18. [18] P. Schneider: Introduction to the Beilinson conjectures. In Beilinson's Conjectures on Special Values of L-Functions. Academic Press (1988) pp. 1-35. Zbl0673.14007MR944989
  19. [19] J.-P. Serre and J. Tate: Good reduction of abelian varieties. Annals of Math. (1968) 492-517. Zbl0172.46101MR236190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.