An isoperimetric inequality for the area of plane regions defined by binary forms
Compositio Mathematica (1994)
- Volume: 92, Issue: 2, page 115-131
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBean, Michael A.. "An isoperimetric inequality for the area of plane regions defined by binary forms." Compositio Mathematica 92.2 (1994): 115-131. <http://eudml.org/doc/90301>.
@article{Bean1994,
author = {Bean, Michael A.},
journal = {Compositio Mathematica},
keywords = {isoperimetric inequality; Thue equation; Thue inequality; area; real affine plane},
language = {eng},
number = {2},
pages = {115-131},
publisher = {Kluwer Academic Publishers},
title = {An isoperimetric inequality for the area of plane regions defined by binary forms},
url = {http://eudml.org/doc/90301},
volume = {92},
year = {1994},
}
TY - JOUR
AU - Bean, Michael A.
TI - An isoperimetric inequality for the area of plane regions defined by binary forms
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 2
SP - 115
EP - 131
LA - eng
KW - isoperimetric inequality; Thue equation; Thue inequality; area; real affine plane
UR - http://eudml.org/doc/90301
ER -
References
top- 1 Abramowitz, M. and Stegun, I., Handbook of Mathematical Functions, Dover, 1965. Zbl0171.38503
- 2 Ahlfors, L.V., Complex Analysis, 3rd edition, McGraw-Hill, New York, 1979. Zbl0395.30001MR510197
- 3 Bean, M.A., Areas of Plane Regions Defined by Binary Forms, Ph.D. Thesis, University of Waterloo, 1992.
- 4 Beardon, A.F., The Geometry of Discrete Groups, Springer, New York, 1983. Zbl0528.30001MR698777
- 5 Bombieri, E. and Schmidt, W.M., On Thue's equation, Invent. Math., 88 (1987) 69-81. Zbl0614.10018MR877007
- 6 Dickson, L.E., Algebraic Invariants, Wiley, New York, 1914. Zbl45.0196.10JFM45.0196.10
- 7 Hardy, G.H., Littlewood, J.E., and Polya, G., Inequalities, Cambridge, 1952. MR46395JFM60.0169.01
- 8 Gunning, R.C., Introduction to Holomorphic Functions of Several Variables, Wadsworth & Brooks-Cole, 1990. Zbl0699.32001
- 9 Hooley, C., On binary cubic forms, J. reine angew. Math., 226 (1967) 30-87. Zbl0163.04605MR213299
- 10 Hormander, L., An Introduction to Complex Analysis in Several Variables, 3rd edition, North-Holland, Amsterdam, 1990. Zbl0685.32001MR1045639
- 11 Mahler, K., Zur Approximation algebraischer Zahlen III, Acta Math., 62 (1933) 91-166. Zbl0008.19801JFM60.0159.04
- 12 Mueller, J. and Schmidt, W.M., Thue's equation and a conjecture of Siegel, Acta Math., 160 (1988) 207-247. Zbl0655.10016MR945012
- 13 Mueller, J. and Schmidt, W.M., On the Newton Polygon, Mh. Math., 113 (1992) 33-50. Zbl0770.12001MR1149059
- 14 Salmon, G.C., Modern Higher Algebra, 3rd edition, Dublin, 1876, 4th edition, Dublin, 1885 (reprinted 1924, New York).
- 15 Schmidt, W.M., Thue equations with few coefficients, Trans. Amer. Math. Soc., 303 (1987) 241-255. Zbl0634.10017MR896020
- 16 Stewart, C.L., On the number of solutions of polynomial congruences and Thue equations, J. Amer. Math. Soc., 4 (1991) 793-835. Zbl0744.11016MR1119199
- 17 Thue, A., Uber Annaherungswerte algebraischer Zahlen, J. reine angew. Math., 135 (1909) 284-305. JFM40.0265.01
- 18 van der Waerden, B.L., Algebra, Volumes 1 and 2, Springer, 1991. MR865346
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.