Crystal bases of Verma modules for quantum affine Lie algebras

Seok-Jin Kang; Masaki Kashiwara; Kailash C. Misra

Compositio Mathematica (1994)

  • Volume: 92, Issue: 3, page 299-325
  • ISSN: 0010-437X

How to cite

top

Kang, Seok-Jin, Kashiwara, Masaki, and Misra, Kailash C.. "Crystal bases of Verma modules for quantum affine Lie algebras." Compositio Mathematica 92.3 (1994): 299-325. <http://eudml.org/doc/90309>.

@article{Kang1994,
author = {Kang, Seok-Jin, Kashiwara, Masaki, Misra, Kailash C.},
journal = {Compositio Mathematica},
keywords = {energy function; path realization; crystal base; Verma modules; quantum affine Lie algebras},
language = {eng},
number = {3},
pages = {299-325},
publisher = {Kluwer Academic Publishers},
title = {Crystal bases of Verma modules for quantum affine Lie algebras},
url = {http://eudml.org/doc/90309},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Kang, Seok-Jin
AU - Kashiwara, Masaki
AU - Misra, Kailash C.
TI - Crystal bases of Verma modules for quantum affine Lie algebras
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 92
IS - 3
SP - 299
EP - 325
LA - eng
KW - energy function; path realization; crystal base; Verma modules; quantum affine Lie algebras
UR - http://eudml.org/doc/90309
ER -

References

top
  1. [D] Drinfeld, V.G.: Hopf algebra and the Yang-Baxter equation. Soviet Math. Dokl.32 (1985) 254-258. Zbl0588.17015
  2. [J] Jimbo, M.: A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys.10 (1985) 63-69. Zbl0587.17004MR797001
  3. [JMMO] Jimbo, M., Misra, K.C., Miwa, T. and Okado, M.: Combinatorics of representations of U q(šl(n)) at q = 0. Commun. Math. Phys.136 (1991) 543-566. Zbl0749.17015MR1099695
  4. [K1] Kashiwara, M.: Crystalizing the q-analogue of universal enveloping algebras. Commun. Math. Phys.133 (1990) 249-260. Zbl0724.17009MR1090425
  5. [K2] Kashiwara, M.: On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J.63 (1991) 465-516. Zbl0739.17005MR1115118
  6. [KKM] Kang, S.-J., Kashiwara, M. and Misra, K.C.: Crystal bases of Verma modules for quantum affine Lie algebras. RIMS preprint887 (1992). 
  7. [KMN1] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Vertex models and crystals. C. R. Acad. Sci. Paris t.315, Série I (1992) 375-380. Zbl0776.17008MR1179041
  8. [KMN2] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Affine crystals and vertex models. Int. J. Mod. Phys. A. Suppl. 1A (1992), 449-484. Zbl0925.17005MR1187560
  9. [KMN3] Kang, S.-J., Kashiwara, M., Misra, K.C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Perfect crystals of quantum affine Lie algebras. Duke Math. J.68 (1992) 499-607. Zbl0774.17017MR1194953
  10. [KM1] Kang, S.-J. and Misra, K.C.: Crystal bases and tensor product decomposition of Uq(G2)-modules. J. Algebras, to appear. Zbl0808.17006MR1265857
  11. [KM2] Kang, S.-J. and Misra, K.C.: The quantum affine Lie algebra Uq(C(1)n) and crystal base. Manuscript in preparation. 
  12. [KN] Kashiwara, M. and Nakashima, T.: Crystal graphs for representations of the q-analogue of classical Lie algebras. RIMS preprint 767 (1991), J. Algebra, to appear. Zbl0808.17005MR1273277
  13. [Li] Littelmann, P.: Crystal graphs and Young tableaux. Preprint (1991). Zbl0831.17004MR1338967
  14. [Lu1] Lusztig, G.I.: Canonical bases arising from quantized enveloping algebra. J. Amer. Math. Soc.3 (1990) 447-498. Zbl0703.17008MR1035415
  15. [Lu2] Lusztig, G.I.: Canonical bases arising from quantized enveloping algebra II. Progr. Theor. Phys. Suppl.102 (1990) 175-201. Zbl0776.17012MR1182165
  16. [LG] Lusztig, G.I. and Grojnowski, I.: A comparison of bases of quantized enveloping algebras. Linear algebraic groups and their representations. Contemporary Mathematics153 (1993) 11-19. Zbl1009.17502MR1247495
  17. [MM] Misra, K.C. and Miwa, T.: Crystal base for the basic representation of Uq(šl(n)). Commun. Math. Phys.134 (1990) 79-88. Zbl0724.17010MR1079801
  18. [N] Nakashima, T.: Crystal base and a generalization of the Littlewood-Richardson rule for the classical Lie algebras. Commun. Math. Phys.154 (1993) 215-243. Zbl0795.17016MR1224078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.