Spherical functions on a complex classical quantum group
Welleda Baldoni; Pierluigi Möseneder Frajria
Compositio Mathematica (1994)
- Volume: 93, Issue: 2, page 113-128
- ISSN: 0010-437X
Access Full Article
topHow to cite
topBaldoni, Welleda, and Möseneder Frajria, Pierluigi. "Spherical functions on a complex classical quantum group." Compositio Mathematica 93.2 (1994): 113-128. <http://eudml.org/doc/90316>.
@article{Baldoni1994,
author = {Baldoni, Welleda, Möseneder Frajria, Pierluigi},
journal = {Compositio Mathematica},
keywords = {quantum homogeneous space; spherical functions; Macdonald polynomials associated with root systems; complex quantum group; invariant elements},
language = {eng},
number = {2},
pages = {113-128},
publisher = {Kluwer Academic Publishers},
title = {Spherical functions on a complex classical quantum group},
url = {http://eudml.org/doc/90316},
volume = {93},
year = {1994},
}
TY - JOUR
AU - Baldoni, Welleda
AU - Möseneder Frajria, Pierluigi
TI - Spherical functions on a complex classical quantum group
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 93
IS - 2
SP - 113
EP - 128
LA - eng
KW - quantum homogeneous space; spherical functions; Macdonald polynomials associated with root systems; complex quantum group; invariant elements
UR - http://eudml.org/doc/90316
ER -
References
top- 1 W.M. Baldoni and P. Möseneder Frajria, Spherical functions on SLq (2, C), (to appear). Zbl0814.17015
- 2 V.G. Drinfel'd, Quantum groups, Proceedings of the International Congress of Mathematicians, Berkeley, 1986, pp. 798-820. Zbl0667.16003MR934283
- 3 M. Duflo, Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple, Ann. of Math.105 (1977), 107-120. Zbl0346.17011MR430005
- 4 G.J. Heckman, Lectures on Hypergeometric and Spherical Functions, Notes of the Lectures given at the European School of Group Theory, Marseille, July 1991.
- 5 H. Jack, A class of symmetric polynomials with a parameter, R.S. Edinburgh69A (1970), 1-18. Zbl0198.04606MR289462
- 6 M. Jimbo, A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys.10 (1985), 63-69. Zbl0587.17004MR797001
- 7 M. Kashiwara, On Crystal bases of the q-analogue of universal enveloping algebras., Duke Math. J.63 (1991), 465-515. Zbl0739.17005MR1115118
- 8 T.H. Koornwinder, Continuous q-Legendre polynomials as spherical matrix elements of irreducible representations of the quantum SU(2) group, C.W.I. Quarterly2 (1989), 171-173. Zbl0677.33008
- 9 G. Lusztig, Quantum deformation of certain simple modules over enveloping algebras, Advances in Math.70 (1988), 237-249. Zbl0651.17007MR954661
- 10 I.G. Macdonald, Commuting differential operators and zonal spherical functions, Lecture Notes in Mathematics1271 (A. M. Cohen, W. H. Hesselink, W. L. J. van der Kalen, and J. R. Strooker, eds.), Springer-Verlag, Berlin- Heidelberg, New York, 1987, pp. 189-200. Zbl0629.43010MR911140
- 11 —, Orthogonal polynomials associated with root systems, preprint.
- 12 —, Symmetric Functions and Hall Polynomials, 2nd edition (to appear).
- 13 M. Noumi and K. Mimachi, Roger's q-ultraspherical polynomials on a quantum 2-sphere, Duke Math. J.63 (1991), 65-80. Zbl0780.33011MR1106938
- 14 P. Podles, Complex quantum groups and their real representations, Publ. RIMS28 (1992), 709-745. Zbl0809.17003MR1195996
- 15 N. Yu. Reshetikhin, L.A. Takhtajan, and L.D. Fadeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J1 (1990), 193-225. Zbl0715.17015MR1015339
- 16 L.J. Rogers, Third memoir on the expansion of certain infinite products, Proc. London Math. Soc.25 (1895), 15-32. Zbl26.0289.01JFM26.0289.01
- 17 M. Rosso, Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra, Comm. Math. Phys.117 (1988), 581-593. Zbl0651.17008MR953821
- 18 —, Algèbres enveloppantes quantifiées, groupes quantiques compacts de matrices et calcul différentiel non commutatif, Duke Math. J.61 (1990), 11-40. Zbl0721.17013
- 19 Ya. S. Soibel'man, An algebra of functions on a compact quantum groups, Leningrade Math. J.2 (1991), 161-178. Zbl0718.46012MR1049910
- 20 S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys.111 (1987), 613-665. Zbl0627.58034MR901157
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.