Asymptotic growth of Markoff-Hurwitz numbers

Arthur Baragar

Compositio Mathematica (1994)

  • Volume: 94, Issue: 1, page 1-18
  • ISSN: 0010-437X

How to cite

top

Baragar, Arthur. "Asymptotic growth of Markoff-Hurwitz numbers." Compositio Mathematica 94.1 (1994): 1-18. <http://eudml.org/doc/90327>.

@article{Baragar1994,
author = {Baragar, Arthur},
journal = {Compositio Mathematica},
keywords = {Markoff numbers; growth of integral solutions; symmetric equations of Hurwitz; multi-branched Euclidean trees; asymptotic growth},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Kluwer Academic Publishers},
title = {Asymptotic growth of Markoff-Hurwitz numbers},
url = {http://eudml.org/doc/90327},
volume = {94},
year = {1994},
}

TY - JOUR
AU - Baragar, Arthur
TI - Asymptotic growth of Markoff-Hurwitz numbers
JO - Compositio Mathematica
PY - 1994
PB - Kluwer Academic Publishers
VL - 94
IS - 1
SP - 1
EP - 18
LA - eng
KW - Markoff numbers; growth of integral solutions; symmetric equations of Hurwitz; multi-branched Euclidean trees; asymptotic growth
UR - http://eudml.org/doc/90327
ER -

References

top
  1. [B1] A. Baragar: The Markoff Equation and Equations of Hurwitz, Ph.D. Thesis, Brown University, 1991. 
  2. [B2] A. Baragar: Integral solutions of Markoff-Hurwitz equations, J. Number Theory (to appear). Zbl0820.11016MR1295950
  3. [Ca] J.W.S. Cassels: An Introduction to Diophantine Approximation, Chap. II, Cambridge Univ. Press, Cambridge, 1957. Zbl0077.04801MR87708
  4. [Co] H. Cohn: Growth types of Fibonacci and Markoff, Fibonacci Quart.17(2) (1979) 178-183. Zbl0415.05018MR536967
  5. [He] N.P. Herzberg: On a problem of Hurwitz, Pac. J. Math.50 (1974) 485-493. Zbl0247.10010MR347731
  6. [Hu] A. Hurwitz: Über eine aufgabe der unmbestimmten analysis, Archiv. Math. Phys.3 (1907) 185-196;Mathematisch Werke, Vol. 2, Chap. LXX (1933 and 1962) 410-421. JFM38.0246.01
  7. [Ma] A.A. Markoff: Sur les formes binaires indéfinies, Math. Ann.17 (1880) 379-399. MR1510073JFM12.0143.02
  8. [Mo1] L.J. Mordell: On the integer solutions of the equation x2 + y2 + z2 + 2xyz = n, J. London Math. Soc.28 (1953) 500-510. Zbl0051.27802MR56619
  9. [Mo2] L.J. Mordell: Diophantine Equations, Chap. 13.4. Academic Press, New York, London, 1969, pp. 106-110. Zbl0188.34503MR249355
  10. [S] J.H. Silverman: The Markoff equation x2 + y2 + z2 = axyz over quadratic imaginary fields, J. Number Theory35(1) (1990) 72-104. Zbl0702.11012MR1054560
  11. [Z] D. Zagier: On the number of Markoff numbers below a given bound, Math. Comp.39 (1982) 709-723. Zbl0501.10015MR669663

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.