Inversion techniques and combinatorial identities. Jackson’s q -analogue of the Dougall-Dixon theorem and the dual formulae

Wenchang Chu

Compositio Mathematica (1995)

  • Volume: 95, Issue: 1, page 43-68
  • ISSN: 0010-437X

How to cite


Chu, Wenchang. "Inversion techniques and combinatorial identities. Jackson’s $q$-analogue of the Dougall-Dixon theorem and the dual formulae." Compositio Mathematica 95.1 (1995): 43-68. <>.

author = {Chu, Wenchang},
journal = {Compositio Mathematica},
keywords = {inversion},
language = {eng},
number = {1},
pages = {43-68},
publisher = {Kluwer Academic Publishers},
title = {Inversion techniques and combinatorial identities. Jackson’s $q$-analogue of the Dougall-Dixon theorem and the dual formulae},
url = {},
volume = {95},
year = {1995},

AU - Chu, Wenchang
TI - Inversion techniques and combinatorial identities. Jackson’s $q$-analogue of the Dougall-Dixon theorem and the dual formulae
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 95
IS - 1
SP - 43
EP - 68
LA - eng
KW - inversion
UR -
ER -


  1. 1 G.E. Andrews: Connection coefficient problems and partitions, Proc. Symp. Pure Math.34 (1979) 1-24. Zbl0403.33002MR525316
  2. 2 R. Askey: Variants of Clausen's formula for the square of a special 2F 1, in Number Theory and Related Topics, Tata Institute of Fundamental Research, Bombay, 1988. Zbl0756.33002MR1441321
  3. 3 W.N. Bailey: Generalized Hypergeometric Series, Cambridge University Press, London, 1935. Zbl0011.02303JFM61.0406.01
  4. 4 D.M. Bressoud: The Bailey lattice: an introduction, 57-67 in Ramanujan Revisited (G. E. Andrews et al. eds.), Academic Press, New York, 1988. Zbl0652.10011MR938960
  5. 5 L. Carlitz: Some inverse relations, Duke Math. J.40 (1973) 893-901. Zbl0276.05012MR337651
  6. 6 W.C. Chu: A class of bivariate reciprocal formulas and applications to combinatorial identities (Chinese, English summary), Appl. Math.1(3) (1988) 63-66. Zbl0666.05007MR984548
  7. 7 W.C. Chu: Inversion techniques and combinatorial identities: Strange evaluations of basic hypergeometric series, Compositio Math.9 (1994), 121-144. Zbl0807.33014MR1273645
  8. 8 W.C. Chu: Symmetry on q-Pfaff-Saalschutz-Sheppard series, Rivista di Mat. N11 (1992), 73-79. Zbl0757.33003MR1183440
  9. 9 W.C. Chu and L.C. Hsu: Some new applications of Gould-Hsu inversions, J. Combin., Informat., Systems Sci.14(1) (1990) 1-4. Zbl0717.11007MR1068649
  10. 10 S.B. Ekhad: A short proof of a terminating "strange" hypergeometric summation formula of Gasper and Rahman, Preprint, 1990. 
  11. 11 H. Exton: Q-Hypergeometric Series and Applications, Ellis Horwood Limited, England, 1983. Zbl0514.33001MR708496
  12. 12 G. Gasper: Summation, transformation and expansion formulas for bibasic series, Trans. Amer. Math. Soc.312(1) (1989) 257-277. Zbl0664.33010MR953537
  13. 13 G. Gasper and M. Rahman: An indefinite bibasic summation formula and some quadratic, cubic and quartic summations and transformation formulas, Can. Math. J.17(1) (1990) 1-27. Zbl0707.33009MR1043508
  14. 14 G. Gasper and M. Rahman: Basic hypergeometries series, vol. 35, in Encyclopedia of Mathematics and Its Application (ed. G. C. Rota); Cambridge University Press, Cambridge, 1990. Zbl0695.33001MR1052153
  15. 15 Ira Gessel and D. Stanton: Strange evaluations of hypergeometric series, SIAM J. Math. Anal.13 (1982) 295-308. Zbl0486.33003MR647127
  16. 16 Ira Gessel and D. Stanton: Applications of q-Lagrange inversion to basic hypergeometric series, Trans. Amer. Math. Soc.277(1) (1983) 173-201. Zbl0513.33001MR690047
  17. 17 H.W. Gould: Combinatorial Identities, Morgantown, West-Virginia, 1972. Zbl0241.05011MR354401
  18. 18 H.W. Gould and L.C. Hsu: Some new inverse series relations, Duke Math. J.40 (1973) 885-891. Zbl0281.05008MR337652
  19. 19 D.H. Greene and D.E. Knuth: Mathematics for the Analysis of Algorithms, Birkerhauser, 1981. Zbl0481.68042MR642197
  20. 20 C. Krattenthaler: A new matrix inverse, Preprint, 1989. Zbl0843.15005MR1291781
  21. 21 B. Nassrallah and M. Rahman: On the q-analogues of some transformations of nearly-poised hypergeometric series, Trans. Amer. Math. Soc.268 (1981) 211-229. Zbl0469.33004MR628455
  22. 22 M. Rahman: Some cubic summation formulas for basic hypergeometric series, Utilitas Math.36 (1989) 161-172. Zbl0691.33002MR1030781
  23. 23 J. Riordan: Combinatorial Identities, Wiley, New York, 1968. Zbl0194.00502MR231725
  24. 24 L.J. Slater: Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. Zbl0135.28101MR201688
  25. 25 D. Zeilberger: The method of creative telescoping, Preprint, 1990. Zbl0738.33002MR1103727

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.